首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
MFI型硅铁沸石水热合成、介孔改性与结构表征
作者:韩静宇1 王洪涛1 张莉1 张舒冬2 封瑞江1 金英杰1 
单位:1. 辽宁石油化工大学化学化工与环境学部 辽宁 抚顺 113001 2. 中国石化抚顺石油化工研究院 辽宁 抚顺 113001 
关键词:硅铁沸石 碱酸处理 硅铁比 多级介孔 脱硅选择性 
分类号:TQ424. 25
出版年,卷(期):页码:2017,45(7):976-983
DOI:
摘要:

 采用无机铁、硅原料合成不同组成的MFI型硅铁沸石。通过碱酸处理对质子化硅铁沸石进行介孔改性。用X射线衍射、Fourier变换红外光谱、紫外–可见光谱、N2吸附、扫描电子显微镜和能量色散X射线谱表征沸石的晶体和孔结构性质,探究骨架Si/Fe摩尔比与晶内介孔率和Si、Fe脱除行为的关系。结果表明:合成的硅铁酸盐是结晶性好的Fe3+同构取代MFI型沸石;系列改性硅铁沸石具有较高的结晶度保留率、脱硅选择性、介孔率及二级介孔分布特征。骨架Si/Fe比是影响沸石选择性脱硅和介孔形成的关键因素。起始Si/Fe比为60~120的改性沸石具有更高的介孔率及Si、Fe脱除效率。

 MFI-type ferrisilicates with various Si/Fe molar ratios were hydrothermally synthesized using inorganic ferric and silica sources. The mesoporous modification of the MFI-type ferrisilicates in proton form was performed via a combined alkali-acid treatment. The crystal structure and porous distribution of precursor and modified zeolites were investigated by X-ray diffraction, Fourier transform infrared spectroscopy, ultraviolet-visible light absorption spectroscopy, N2-adsorption, scanning electron microscopy, and energy dispersive X-ray spectroscopy, respectively. The results show that the intra-grain mesoporostity and removal behavior of T-atoms (T= Si + Fe) are correlated to Si/Fe ratio in framework. The ferrisilicates as-prepared are MFI zeolites with a complete crystallinity, in which most Fe3+ atoms are incorporated into MFI framework. After being subjected to the alkali-acid treatment, the ferrisilicates preserve an adequate crystallinity, a high desilication selectivity and a mesoporosity, and present a two-level mesopore distribution. Moreover, the initial Si/Fe ratio in framework has a crucial effect on the controlled desilication for mesopore formation. The modified zeolites with initial Si/Fe ratios in the range of 60~120 have both greater mesoporostity and removal efficiency of T-atoms.

 
基金项目:
国家自然科学基金项目(21171083)。
作者简介:
韩静宇(1992—),女,硕士研究生。
参考文献:

 [1] BOKHOVEN J A V, LAMBERTI C. Structure of aluminum, iron, and other heteroatoms in zeolites by X-ray absorption spectroscopy [J]. Coord Chem Rev, 2014, 277/278(4): 275−290.

[2] 魏波, 孙建敏, 曹慧群, 等. 铁硅分子筛Fe–Silicalite–1催化剂的一步合成与应用[J]. 人工晶体学报, 2009, 38(5): 1184−1188. 
WEI Bo, SUN Jianmin, CAO Huiqun, et al. J Synth Cryst(in Chinese), 2009, 38(5): 1184−1188.
[3] LI X, LI B S, XU J Q. Synthesis and characterization of transitional metal-rich zeolite M-MFI (M = Fe, Co, Ni, Cu) with regular mesoporous channels [J]. Colloids Surf A, 2013, 434(19): 287−295.
[4] GROEN J C, JANSEN J C, MOULIJN J A, et al. Optimal aluminum-assisted mesoporosity development in MFI zeolites by desilication [J]. J Phys Chem B, 2004, 108(35): 13062−13065.
[5] JIN Y J, ASAOKA S, LI X H, et al. Synthesis of liquefied petroleum gas via methanol/dimethyl ether from natural gas [J]. Fuel Process Technol, 2004, 85(8): 1151−1164.
[6] JIN Y J, ASAOKA S, LI X H, et al. Synthesis of liquefied petroleum gas via methanol and/or diamethyl ether from natural gas (Part 3): Investigation of reaction variables, ethene recycling and catalyst regeneration at high conversion from methanol and/or diamethyl ether to LPG [J]. J Jpn Petrogr Inst, 2005, 48(2): 97−105.
[7] JIN Y J, ASAOKA S, ZHANG S D, et al. Reexamination on transition metal substituted MFI zeolites for catalytic conversion of methanol into light olefins [J]. Fuel Process Technol, 2013, 115(11): 34−41.
[8] GROEN J C, MALDONADO L, BERRIER E, et al. Alkaline treatment of iron-containing MFI zeolites. influence on mesoporosity development and iron speciation [J]. J Phys Chem B, 2006, 110(41): 20369−20378.
[9] 李庆华, 王景伟, 袁昊, 等. 微孔和介孔材料中的热化学[J]. 化学进展, 2006, 18(5): 680−686.
LI Qinghua, WANG Jingwei, YUAN Hao, et al. Prog Chem(in Chinese), 2006, 18(5): 680−686.
[10] WEI Y, JONGH P E D, BONATI M L M, et al. Enhanced catalytic performance of zeolite ZSM-5 for conversion of methanol to dimethyl ether by combining alkaline treatment and partial activation [J]. Appl Catal A, 2015, 504: 211−219.
[11] 杜夏梅, 谷迎秋, 孙月桥, 等. 水热碱蚀与碱溶滤联合处理制备介孔丝光沸石[J]. 硅酸盐学报, 2013, 41(9): 1198−1206.
DU Xiamei, GU Yingqiu, SUN Yueqiao, et al. J Chin Ceram Soc, 2013, 41(9): 1198−1206.
[12] VERBOEKEND D, MITCHELL S, MILINA M, et al. Full compositional flexibility in the preparation of mesoporous MFI zeolites by desilication [J]. J Phys Chem C, 2011, 115(29): 14193−14203.
[13] 张立东, 高俊华, 胡津仙, 等. Fe/ZSM-5的制备及其催化甲苯/甲醇烷基化反应行为[J]. 化工进展, 2009, 28(8): 1360−1364. 
ZHANG Lidong, GAO Junhua, HU Jinxian, et al. Chem Ind Eng Prog(in Chinese), 2009, 28(8): 1360−1365. 
[14] YOO W C, ZHANG X Y, TSAPATSIS M, et al. Synthesis of mesoporous ZSM-5 zeolites through desilication and re-assembly processes [J]. Microp Mesop Mater, 2012, 149(1): 147−157.
[15] GROEN J C, PEFFER L A A, MOULIJN J A, et al. Mechanism of Hierarchical Porosity Development in MFI Zeolites by Desilication: The Role of Aluminium as a Pore-Directing Agent [J]. Chem Eur J, 2005, 11(17): 4983−4994.
[16] GROEN J C, CAICEDO-REALPE R, ABELLÓ S, et al. Mesoporous metallosilicate zeolites by desilication: On the generic pore-inducing role of framework trivalent heteroatoms [J]. Mater Lett, 2009, 63(12): 1037−1040.
[17] 王超,韩静宇, 王洪涛, 等. 碱酸处理H–ZSM–5沸石多级孔改性研究[J]. 石油化工, 2016, 45(4): 415−421. 
WANG Chao, HAN Jingyu, WANG Hongtao, et al. Petrochem Technol(in Chinese), 2016, 45(4): 415−421.
[18] 李洋洋, 王颖敏,徐丽颖, 等. ZSM–22、β和丝光沸石介孔改性对比研究[J]. 人工晶体学报, 2014, 43(6): 1576−1582.
LI Yangyang, WANG Yinming, XU Liyin, et al. J Synth Cryst(in Chinese), 2014, 43(6): 1576−1582.
[19] JIN Y J, XIAO C C, LIU J H, et al. Mesopore modification of beta zeolites by sequential alkali and acid treatments: Narrowing mesopore size distribution featuring unimodality and mesoporous texture properties estimated upon a mesoporous volumetric model [J]. Micropor Mesopor Mater, 2015, 218(7): 180−191.
[20] 王超, 韩静宇, 王洪涛, 等. 骨架硅铝比对改性H–ZSM–5沸石孔结构及硅铝脱除行为的影响[J]. 石油化工, 2016, 45(7): 812−818. 
WANG Chao, HAN Jingyu, WANG Hongtao, et al. Petrochem Technol(in Chinese), 2016, 45(7): 812−818. 
[21] LIEBAU F. Ordered microporous and mesoporous materials with inorganic hosts: Definitions of terms, formula notation, and systematic classification [J]. Micropor Mesopor Mater, 2003, 58(1): 15−72.
[22] ZECCHINA A, BORDIGA S, SPOTO G, et al. Silicalite characterization. 1. Structure, adsorptive capacity, and ir spectroscopy of the framework and hydroxyl modes [J]. J Phys Chem, 1992, 96(12): 4985−4990. 
[23] RAVISHANKAR R, KIRSCHHOCK C, SCHOEMAN B J, et al. Physicochemical characterization of silicalite-1 nanophase material [J]. J Phys Chem B, 1998, 102(15): 2633−2639. 
[24] 陈丽, 王一萌, 何鸣元. 具有多级孔的纯硅沸石材料的合成[J]. 高等学校化学学报, 2010, 31(11): 2131−2135. 
CHEN Li, WANG Yimeng, HE Mingyuan. Chem J Chin Univ(in Chinese), 2010, 31(11): 2131−2135.
[25] KROKIDAS P G, NIKOLAKIS V, BURGANOS V N. Heating and sorption effects on silicalite-1 unit cell size and geometry [J]. Micropor Mesopor Mater, 2012, 155: 65−70.
[26] CHAO P Y. TSAI S T, TSAI T C, et al. Phenol Hydroxylation over Alkaline Treated TS-1 Catalysts [J]. Top Catal, 2009, 52(1/2): 185−192.
[27] 张敏, 高丙莹, 何红运. 新型V–Ni–β沸石的合成、表征及催化性  能[J]. 无机化学学报, 2012, 28(11): 2355−2362.
ZHANG Min, GAO Bingying, HE Hongyun. Chin J Inorg Chem(in Chinese), 2012, 28(11): 2355−2362.
[28] FATHI S, SOHRABI M, FALAMAKI C. Improvement of HZSM-5 performance by alkaline treatments: Comparative catalytic study in the MTG reactions [J]. Fuel, 2014, 116(1): 529−537.
[29] 彭鹏, 张占全, 王有和, 等. 多级孔分子筛的制备与催化应用[J]. 化学进展, 2013, 25(12): 2028−2037. 
PENG Peng, ZHANG Zhanquan, WANG Youhe, et al. Prog Chem(in Chinese), 2013, 25(12): 2028−2037.  
[30] VERBOEKEND D, CHABANEIX A, THOMAS K, et al. Mesoporous ZSM-22 zeolite obtained by desilication: peculiarities associated with crystal morphology and aluminium distribution [J]. CrystEngComm, 2011, 13(10): 3408−3416.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com