[1] ZHOU H, SHEN Y, XI J, et al. ZrO2-nanoparticle-modified graphite felt: functional effects on vanadium flow batteries [J]. ACS Appl Mater Interfaces, 2016, 8(24): 15369?15378.
[2] 张颖异, 李运刚, 张快, 等. 高温电热材料的研究发展[J]. 材料热处理技术, 2011, 40(18): 40?47.
ZHANG Yingyi, LI Yungang, ZHANG Kuai et al. Mater Heat Treat (in Chinese), 2011, 40(18): 40?47.
[3] LANCE M J, VOGEL EM, REITH LA, et al. Low-temperature aging of zirconia ferrules for optical connectors [J]. J Am Ceram Soc, 2001, 84(11): 731–2733.
[4] PLASHNITSA V V. ELUMALAI P, KAWAGUCHI T, et al. Highly sensitive and selective zirconia-based propene sensor using nanostructured gold sensing electrodes fabricated from colloidal solutions [J]. J Phys Chem C, 2009, 113 (18): 7857–7862.
[5] 戴斌煜, 陈同彩, 商景利, 等. 氧化镁和氧化铈复合部分稳定氧化锆泡沫陶瓷的显微结构[J]. 硅酸盐学报, 2007, 35(2): 192?196.
DAI Binyu, CHEN Tongcai, SHANG Jingli, et al. J Chin Ceram Soc, 2007, 35(2): 192?196.
[6] SMUK B, SZUTKOWSKA M, WALTER J, et al. Alumina ceramics with partially stabilized zirconia for cutting tools [J]. J Mater Process Techol, 2003, 133: 195–198.
[7] 吴玉厚, 王宇, 李颂华, 等. 氧化锆陶瓷轴承套圈内圆磨削力的试验研究[J]. 机械设计与制造, 2015, 9: 159?165.
WU Yuhou, WANG Yu, LI Songhua, et al. Mach Des Manuf (in Chinese), 2015, 9: 159?165.
[8] KOHORST P, DITTMER M P, BORCHERS L, et al. Influence of cyclic fatigue in water on the load-bearing capacity of dental bridges made of zirconia [J]. Acta Biomater, 2008, 4(5): 1440–1447.
[9] 李武. 无机晶须[M]. 北京: 化学工业出版社, 2005: 1–2.
[10] LIU Y, ZHENG C, WANG W, et al. Synthesis and characterization of zirconia nanorods [J]. J Am Ceram Soc, 2002, 85(12): 3120?3122.
[11] RAO C N R, SATISHKUMAR B C, GOVINDARAJ A. Zirconia nanotubes [J]. Chem Commun, 1997, 16: 1581?1582
[12] SHIRAISHI Y, UEHARA T, SAWAI H, et al. Electro-optic properties of liquid crystal devices doped with cucurbit (6) uril-protected zirconia nanowires [J]. Colloid Surf A, 2014, 460: 90–94
[13] EPASSAKA D B, OHSHIO S, SAITOH H. Morphological instability of ZrO2 crystallites formed by CVD technique operated under atmospheric pressure [J]. J Mater Sci, 2003, 38: 3239?3244.
[14] EGASHARA M K, KATSKUI H, TAKATSKUI S, et al. Vapor phase growth of monoclinic ZrO2 whiskers [J]. Yojyo-KyoKai-Shi, 1987, 95(1): 138?143
[15] KATO E, NAGAI A, HIRANO M, et al. Growth of whiskered ZrO2 crystals by hydrothermal decomposition of zirconium oxide sulphate pseudo-crystals [J]. J Mater Sci, 1997, 32: 1789?1794
[16] MOTTET B, PICHAVANT M, BENY J M, et al Morphology of zirconia synthesized hydrothermally from zirconium oxychloride [J]. J Am Ceram Soc, 1992, 75(9): 2512?2519.
[17] 江伟辉, 高啟蔚, 刘健敏, 等. 一种非水解溶胶凝胶法结合熔盐工艺制备氧化锆晶须的方法[P]. 中国专利, 201611041899.7. 2016?11?24.
JIANG Weihui, GAO Qiwei, LIU Jianmin, et al. Method for preparing zirconia whiskers via non-hydrolytic sol–gel method combined with molten salt process (in Chinese). CN Patent, 201611041899.7. 2016?11?24.
[18] 陶桥, 林健, 陈江翠, 等. 非水解溶胶–凝胶法制备氧化钇稳定氧化锆粉体[J]. 材料科学与工程学报, 2010, 8(123): 49?52.
TAO Qiao, LIN Jian, CHEN Jiangcui, et al. J Mater Sci Eng (in Chinese). 2010, 8(123): 49?52.
|