首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
钇稳氧化锆的高温电性能
作者:薛群虎1 2 田利萍1 丁冬海1 赵亮1 赵志龙1 
单位:1. 西安建筑科技大学材料与矿资学院 西安 710055 2. 陕西循环经济工程技术院 西安 710055 
关键词:钇稳氧化锆 立方相 气孔率 电导率 抗渣蚀性 
分类号:TQ174
出版年,卷(期):页码:2017,45(6):771-777
DOI:
摘要:

 模拟氧化锆质定径水口基质组成和烧结稳定过程,以Y2O3为稳定剂,分别按照1.8%(质量分数)、3.6%和5.4%的掺杂量,与单斜氧化锆细粉混合后经1 710 ℃保温2 h烧成制备钇稳氧化锆试样。借助X射线衍射和扫描电子显微镜,研究了不同试样相组成和显微结构的差异。根据定径水口使用中杂质呈固相扩散的区域和温度范围,测定了不同试样室温到1 350 ℃的电导率。采用坩埚法测定了氧化锆材料的抗渣蚀性能。结果表明:随着稳定剂添加总量的增加,试样中立方相含量增加,单斜相含量明显减少。试样的电导率随稳定剂掺杂总量的增加呈上升趋势,且随着测试温度的升高而增大。由于相组成的变化,钇稳定氧化锆质材料在高低温区电导率存在显著差异。气孔的存在不仅降低了试样的电导率,也使其抗渣蚀性能减弱。

 

 The matrix composition and process of sintering for zirconia sizing nozzle were simulated. The yttria-stabilized zirconia materials were prepared with a monoclinic zirconia powder as a raw material and various contents of Y2O3 (i.e., 1.8% (in mass fraction), 3.6% and 5.4%) as a stabilizer, respectively. The phase composition and microstructure of the sample sinterred at 1 710 ℃ for 2 h were characterized by X-ray diffractometer and scanning electron microscope, respectively. The conductivity of zirconia materials prepared from room temperature to 1 350 ℃ was determined. The crucibles of yttria-stabilized zirconia were used as samples for corrosion experiments. The results show that the content of cubic zirconia increases and the content of the monoclinic phase decreases with the increase of the addition amount of stabilizer in all the sintered samples. The conductivity of the sintered samples increases with the increase of content of Y2O3 and testing temperature. The change of phase composition results in a difference between conductivities at lower or higher temperatures for the yttria-stabilized zirconia. The poor conductivity and erosion resistance of samples are due to the high porosity.

 
基金项目:
国家自然科学基金(51372193);陕西省自然科学基础研究计划(2014JM6224)资助。
作者简介:
薛群虎(1953—),男,教授。
参考文献:

 [1] MUSTAFA E, WILHELM M, WRUSS W. Phase stability and microstructural characteristics of 12 mol% (Mg, Ca)–PSZ prepared via polymeric route[J]. Ceram Int, 2003, 29(2): 189–194.

[2] BOCANEGRA–BERNAL M H, TORRE S D D L. Phase transitions in zirconium dioxide and related materials for high performance engineering ceramics[J]. J Mater Sci, 2002, 37(23): 4947–4971.
[3] BULLARD R L, CHENG P C, SCHIEFER B F J. Long term casting with zirconia nozzles[J]. Iron Steelmak, 1992,19(6): 19–24.
[4] ZHAO L, XUE Q H, DING D H. Effects of the precipitation of stabilizers on the mechanism of grain fracturing in a zirconia metering nozzle[J]. Int J Miner Metall Mater, 2016, 23(9): 1041–1047.
[5] Primachenko V V, Karaulov A G, Shulik I G, et al. Postservice analysis of zirconia nonswirl nozzles for intermediate ladles of a continuous casting machine[J]. Refract Ind Ceram, 2003, 44(1): 1–3.
[6] PASCUAL C, JURADO J R, DURAN P. Electrical behaviour of doped-yttria stabilized zirconia ceramic materials[J]. J Mater Sci, 1983, 18(5): 1315–1322.
[7] FABRIS S, PAXTON A T, FINNIS M W. A stabilization mechanism of zirconia based on oxygen vacancies only[J]. Acta Mater, 2002, 50(20): 5171–5178.
[8] FARYNA M, BOBROWSKI P, PEDZICH Z, et al. Correlation between microstructure and ionic conductivity in cubic zirconia polycrystals[J]. Mater Lett, 2015, 161: 352–354.
[9] HAERING C, ROOSEN A, SCHICHL H. Degradation of the electrical conductivity in stabilised zirconia system: Part I: yttria–stabilised zirconia[J]. Solid State Ionics, 2005, 176(3–4): 253–259.
[10] SILVA G C T, MUCCILLO E N S. Electrical conductivity of yttria–stabilized zirconia with cobalt addition[J]. Solid State Ionics, 2009, 180(11–13): 835–838.
[11] 李英, 龚江宏, 谢裕生, 等. Y2O3稳定ZrO2材料的电导活化能[J]. 无机材料学报, 2002, 17(4): 811–816.
LI Ying, GONG Jianghong, XIE Yusheng, et al. J Inorg Mater(in Chinese), 2002, 17(4): 811–816.
[12] OKADA H, TAMURA T, RAMAKRISHNAN N, et al. Analysis of toughening of magnesia partially stabilized zirconia, due to dilatational transformation[J]. Acta Metall, 1992, 40(6): 1421–1432.
[13] RICHARD H. J. HANNINK, KELLY P M, et al. Transformation toughening in zirconia-containing ceramics[J]. J Am Ceram Soc, 2000, 83(3): 461–487.
[14] 高运明, 郭兴敏, 周国治. 利用阻抗谱测定氧化锆试样的电导率[J]. 武汉科技大学学报: 自然科学版, 2005, 28(3): 237–240.
GAO Yunming, GUO Xingmin, ZHOU Guozhi. J Wuhan Univ Sci Technol(in Chinese), 2005, 28(3): 237–240. 
[15] 李 鹏, 罗发, 徐洁,等. 部分稳定氧化锆陶瓷的力学及电性能[J]. 硅酸盐学报, 2008, 36(3): 306–310.
LI Peng, LUO Fa, XU Jie, et al. J Chin Ceram Soc, 2008, 36(3): 306–310.
[16] BADWAL S P S, DRENNAN J. Yttria–zirconia: Effect of microstructure on conductivity[J]. J Mater Sci, 1987, 22(9): 3231–3239.
[17] CHEN X J, KHOR K A, CHAN S H, et al. Influence of microstructure on the ionic conductivity of yttria–stabilized zirconia electrolyte[J]. Mater Sci Eng A, 2002, 335(1–2): 246–252.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com