首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
Ba0.9Co0.7Fe0.2Nb0.1O3–δ–Gd0.1Ce0.9O2–δ双相复合透氧膜的氧渗透性能
作者:李雷雷1 杨志宾1 3 韩敏芳1 2 3 
单位:1. 中国矿业大学北京化学与环境工程学院 北京 100083 2. 清华大学热能工程系 电力系统及大型发电设备控制和仿真国家重点实验室 北京 100084 3. 东莞深圳清华大学研究院创新中心 广东 东莞 523808 
关键词:双相膜 透氧量 稳定性 甲烷部分氧化 
分类号:TM 912.9
出版年,卷(期):页码:2017,45(6):778-784
DOI:
摘要:

 通过干压成型制备了Ba0.9Co0.7Fe0.2Nb0.1O3–δ–Gd0.1Ce0.9O2–δ(BCFN–GDC)双相复合透氧膜。研究了GDC掺入量对氧渗透性能的影响。结果表明:70%BCFN–30%GDC透氧膜的氧渗透速率最高。对70%BCFN–30%GDC透氧膜进行100 h稳定性测试,其透氧量稳定在0.33 mL/(cm2·min),稳定性良好。进一步将70%BCFN–30%GDC透氧膜用于甲烷部分氧化重整(POM)研究,在900 ℃、(18 mL/min He+2 mL/min CH4)的混合气吹扫下,100 h的稳定性测试过程中,CH4转化率、CO选择性以及透氧量最终分别达到60%、84%和1.7 mL/(cm2·min),并有缓慢增长的趋势。研究表明:70%BCFN–30%GDC透氧膜具有良好的透氧性能,在POM膜反应器方面具有重要的应用价值。

 

 Dual phase membranes of Ba0.9Co0.7Fe0.2Nb0.1O3–δ–Gd0.1Ce0.9O2–δ (BCFN–GDC) were fabricated via dry-pressing. The result shows that the 70%BCFN–30%GDC membrane exhibits the optimum oxygen flux among the membranes with different mass ratios of GDC and remains the oxygen permeation flux of 0.33mL/(cm2·min) during the stable test for 100 h, which shows a good stability. The 70%BCFN–30%GDC membrane was further investigated for the partial oxidation of methane. The methane conversion, CO selectivity and oxygen permeation flux during the stable test for 100 h are 60%, 84% and 1.7 mL/(cm2·min), respectively. The 70%BCFN–30%GDC membrane with a good oxygen permeation performance and a high stability, exhibits its potential application in the POM.

 
基金项目:
山西省煤基重点科技攻关项目(MD2014–08);东莞市引进创新科研团队计划项目(2014607101);电力系统国家重点实验室项目(SKLD16Z11)。
作者简介:
李雷雷(1991—),男,硕士研究生。
参考文献:

 [1] SUNARSO J, BAUMANN J, SERRA J M, et al. Mixed ionic–electronic conducting (MIEC) ceramic-based membranes for oxygen separation[J]. J Membr Sci, 2008, 320: 13–41.

[2] YANG F, ZHAO H L, YANG J Y, et al. Structure and oxygen permeability of BaCo0.7Fe0.3–xInxO3–δ ceramic membranes[J]. J Membr Sci, 2015, 492: 559–567.
[3] WANG R Z, MENG B, MENG X X, et al. Highly stable La0.6Sr0.4Co0.2Fe0.8O3–δ hollow fiber membrane for air separation swept by steam or steam mixture[J]. J Membr Sci, 2015, 479: 232–239.
[4] CAO Z W, ZHU X F, LI W P, et al. Asymmetric dual-phase membranes prepared via tape–casting and co-lamination for oxygen permeation[J]. J Mater Let, 2015, 147: 88–91.
[5] ZHU X F, LIU H Y, CONG Y, et al. Permeation model and experimental investigation of mixed conducting membranes[J]. J AIChE, 2012, 58(6): 1744–1754.
[6] YANG W S, WANG Y J, TANG J, et al. Oxy–Fuel Combustion for CO2 Capture using a CO2-Tolerant Oxygen Transporting membrane[J]. J AIChE, 2013, 59(10): 3856–3862.
[7] CHENG H W, LUO L F, YAO W L, et al. Novel cobalt-free CO2-tolerant dual-phase membranes of Ce0.8Sm0.2O2–δ–Ba0.95La0.05 Fe1–xZrxO3–δ for oxygen separation[J]. J membr Sci, 2015, 492: 220–229.
[8] ZHU X F, LIU H Y, CONG Y. et al. Novel dual-phase membranes for CO2 capture via an oxyfuel route[J]. J Chem Comm, 2012, 48: 251–253.
[9] SONG S D, ZHANG P, ZHANG X, et al. Partial oxidation of methane reaction in Ba0.9Co0.7Fe0.2Nb0.1O3–δ oxygen permeation membrane with three-layer structure[J]. J Hydr En, 2015, 40: 10894–10901.
[10] ZHANG Y W, SU K, ZENG F L, et al. A novel tubular oxygen-permeable membrane reactor for partial oxidation of CH4 in coke oven gas to syngas[J]. J Hydr En, 2013, 28: 8783–8789.
[11] SONG S D, ZHANG P, HAN M F, et al. Oxygen permeation and partial oxidation of methane reaction in Ba0.9Co0.7Fe0.2Nb0.1O3–δ oxygen permeation membrane[J]. J Membr Sci, 2012, 415–416: 654–662.
[12] ORERA A, SLATER P R. New chemical systems for solid fuel cells[J]. J Chem Mater, 2010, 22: 675–690.
[13] YANG Z B, HAN M F, ZHU P Y, et al. Ba1–xCo0.9–yFeyNb0.1O3–δ (x=0–0.15, y=0–0.9) as cathode materials for solid oxide fuel cells[J]. J Hydr En, 2011, 36: 9162–9168.
[14] 黄华. 双相复合氧分离膜的相转化流延制备和性能研究[D]. 合肥: 中国科学技术大学, 2014.
HUANG Hua. Phase–inversion tape-casting and property of dual-phase oxygen separation membrane(in Chinese, dissertation). Hefei: University of Science of Technology of China, 2014.
[15] BOSE A B, RICHARDS R E, SAMMELLS A F, et al. Beyond state-of-the-art gas separation processes using ion-transport membranes[J]. J Desalination, 2002, 144: 91–92.
[16] 田婷芳. 陶瓷透氧膜材料和过程研究[D]. 合肥: 中国科学技术大学, 2011.
TIAN Tingfang. Ceramic oxygen-permeable membrane material and processes(in Chinese, dissertation). Hefei: University of Science of Technology of China, 2011.
[17] SUNDKVIST S G, GRIFFIN T, THORSHAUG N P. AZEP-development of an integrated air separation membrane-gas turbine. Second nordic minisymposium on carbon dioxide capture and storage, Goteborg, October 26, 2001.
[18] ZHU X F, YANG W S. Composite membrane based on ionic conductor and mixed conductor for oxygen permeation[J]. AIChEJ, 2008, 54(3): 665–672.
[19] LI X Y, Kerstiens T, Markus T. Oxygen permeability and phase stability of Ba0.5Sr0.5Co0.8Fe0.2O3–δ perovskite at intermediate temperatures[J]. J Membr Sci, 2013, 438: 83–89.
[20] 常杰善, 杨志宾, 朱腾龙, 等.烧结温度对La0.6Sr0.4Co0.2Fe0.8O3–δ– Gd0.1Ce0.9O2–δ双相复合透氧膜性能的影响[J]. 硅酸盐学报, 2015, 43(3): 311–315.
CHANG J S, YANG Z B, ZHU T L. et al. Effect of sintering temperature on oxygen permeable performance of La0.6Sr0.4Co0.2Fe0.8O3–δ– Gd0.1Ce0.9O2–δ dual-phase membrane[J]. J Chin Ceram Soc, 2015,  43(3): 311–315.
[21] 常杰善. LSCF–GDC双相复合透氧膜氧渗透性能与应用研究[D]. 北京: 中国矿业大学(北京), 2015.
CHANG Jieshan. Investigation of LSCF–GDC dual phase membrane for oxygen separation and membrane reactor application(in Chinese, dissertation). Beijing: China University of Mining & Technology, Beijing, 2015.
[22] YANG Z B, YANG C H, JIN C, et al. Ba0.9Co0.7Fe0.2Nb0.1O3–δ as cathode material for intermediate temperature solid oxide fuel cells[J]. J Electrochem Comm, 2011, 13: 882–885.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com