首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
六面顶低温超高压烧结制备SiC–Al2O3–Y2O3陶瓷
作者:铁健 柳馨 铁生年 
单位:青海大学 新能源光伏产业研究中心 西宁 810016 
关键词:六面顶技术 超高压烧结 氧化铝 氧化钇 微纳米碳化硅 
分类号:TB383
出版年,卷(期):页码:2017,45(6):841-846
DOI:
摘要:

 以微纳米SiC为原料,采用六面顶压机在1 250 ℃、4.5 GPa、无烧结助剂、不同保温时间条件下烧结SiC陶瓷,优化出最佳保温时间为6 min。采用不同添加量Al2O3、Y2O3(0~15%,质量分数)烧结助剂超高压烧结SiC陶瓷。用X射线衍射、场发射扫描电子显微镜、X射线能谱分析、显微硬度及密度测试对SiC高压烧结体进行了表征。结果表明:同时添加Al2O3和Y2O3为有效低温烧结助剂,在低温超高压烧结条件下,掺杂不同比例烧结助剂的SiC陶瓷产生的新相为Al2Y4O9。其中,添加7.5% Al2O3、7.5% Y2O3,经1 250 ℃、4.5 GPa保温保压6 min超高压烧结条件下,样品相对密度达99.9%,显微硬度可达到HV9.80 2 570。

 

 High density SiC ceramic was fabricated with pure SiC micro- and nano-powders in a hinge-type cubic-anvil press method at 4.5 GPa and 1 250 ℃ for an optimum heat-preserving time of 6 min. SiC ceramic was sinterred at a ultrahigh pressure and different amounts of Al2O3, Y2O3 (0-15% in mass fraction) as sintering aids. The samples were characterized by X-ray diffraction, field emission electron microscopy, X-ray energy spectroscopy, micro-hardness and density tests, respectively. The result shows that the Al2O3 and Y2O3 are effective in low-temperature sintering. At a low temperature and a ultrahigh pressure, SiC ceramic can appear a phase of Al2Y4O9. The relative density of sample sintered with Al2O3 of 7.5% and Y2O3 of 7.5% at 4.5 GPa and 1 250 ℃ for 6 min is 99.9%, and the micro-hardness can reach HV9.80 2 570.

 
基金项目:
青海省重点实验室发展专项资金(2015-Z-Y02)。
作者简介:
铁 健(1990—),男,硕士研究生。
参考文献:

 [1] 江东亮. 碳化硅基复合材料[J]. 无机材料学报, 1995, 10(2): 151–163.

JIANG Dongliang.Silicon carbide based composites[J]. J Inorg Mater(in Cheinese), 1995, 10(2): 151–163.
[2] HILLERY M T. Properties of silicon carbide[J]. Eng Sci Educ J, 1997,  6(6): 212–212.
[3] VASSEN R, KAISER A, STOVER D. Processing and properities of nanograin silicon carbide[J]. J Am Ceram Soc, 1999, 82(10): 2585–2593.
[4] 郭晓明, 闫永杰, 陈健, 等. 挤出成型碳化硅陶瓷的力学性能和显微结构[J]. 无机材料学报, 2009, 24(6): 1155–1158.
GUO Xiaoming, YAN Yongjie, CHEN Jian, et al. J Inorg Mater(in Cheinese), 2009, 24(6): 1155–1158.
[5] 杨晓, 黄政仁, 刘学建, 等. 常压烧结碳化硅陶瓷的表面裂纹对其力学性能的影响[J]. 硅酸盐学报, 2014, 42(7): 841–845. 
YANG Xiao, HUANg Zhengren, LIU Xuejian, et al. J Chin Ceram Soc, 2014, 42(7): 841–845.
[6] BAUD S, THEYENOT F, CHATILLON C. High temperature sintering of SiC with oxide additives: ‖. Vaporization processes in powder beds and gas-phase analysis by mass spectrometry[J]. J Eur Ceram Soc,  2003, 23(1): 9–18.
[7] BHAUMIK S K, DIVAKAR C, USHA DEVI S, et al. Synthesis and sintering of SiC under high pressure and high temperature[J]. J Mater Res, 1999, 14(3): 906–911.
[8] 谢茂林, 罗德礼, 鲜晓斌, 等. 无烧结助剂SiC陶瓷的高压烧结研 究[J]. 中国陶瓷, 2009, 45(1): 19–22.
XIE Maolin, LUO Deli, XIAN Xiaobin, et al. China Ceram(in Cheinese), 2009, 45(1): 19–22.
[9] 鲜晓斌, 谢茂林, 罗德礼, 等. 纳米SiC陶瓷的超高压烧结研究[J]. 硅酸盐学报, 2009, 37(7): 1268–1272.
XIAN Xiaobin, XIE Maolin, LUO Deli, et al. J Chin Ceram Soc, 2009, 37(7): 1268–1272.
[10] 徐光亮, 宋春军, 曹林洪, 等. 超高压成型与无压烧结制备细晶碳化硅陶瓷[J]. 硅酸盐学报, 2008, 36(11): 1629–1632.
XU Guangliang, SONG Chunjun, CAO Linhong, et al. J Chin Ceram Soc, 2008, 36(11): 1629–1632.
[11] 铁健, 铁生年. 半导体制造业用微纳米碳化硅粉体制备工艺研究[J]. 材料导报B, 2016, 30(7): 88–91.
TIE Jian, TIE Shengnian. Mater Rev B(in Cheinese), 2016, 30(7): 88–91.
[12] 铁健, 铁生年. 微波酸碱处理微纳米碳化硅粉体杂质去除工艺研 究[J]. 人工晶体学报, 2016, 45(9): 2311–2316.
TIE Jian, TIE Shengnian. J Synth Cryst(in Cheinese), 2016, 45(9): 2311–2316.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com