首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
锂硫电池中的表面修饰
作者:温兆银 靳俊 谷穗 马国强 
单位:中国科学院上海硅酸盐研究所 上海 200050 
关键词:锂硫电池 硫正极 隔膜 金属锂负极 修饰 
分类号:TQ174.75
出版年,卷(期):页码:2017,45(6):1367-1381
DOI:
摘要:

 锂硫电池理论能量密度高(2 600 W·h/kg)、硫原料丰富、成本低,是最有发展前景的锂二次电池技术之一。然而硫以及放电产物硫化锂电导率低,电化学反应过程中生成的可溶性多硫化物的“穿梭效应”以及电池充放电过程中电极的体积效应等,影响了锂硫电池性能的发挥,阻碍了锂硫电池实用化进程。近年来,通过电极材料的设计、电极表界面的修饰以及电解液体系优化,锂硫电池的性能得到显著提升。综述了近年来锂硫电池中硫正极、隔膜和金属Li表界面修饰方面的研究进展。

 

 Owing to the high theoretical energy density, natural abundance, and low cost, lithium sulfur battery becomes a promising candidate for the next generation rechargeable secondary batteries. However, the commercialization of lithium sulfur battery is inhibited by the insulating nature of sulfur and Li2S, “shuttle effect” caused by the soluble polysulfides in organic electrolyte as well as volume change during the charge/discharge process. In recent years, the performance of lithium sulfur battery was improved significantly by designing the structure of electrode materials, modifying the surface and optimizing the electrolyte. This paper summarizes the research progress in the interface modification of sulfur cathode, separator and lithium metal electrode of lithium-sulfur battery.

 
基金项目:
国家自然科学基金(51402330,51472261,51372262)。
作者简介:
温兆银(1963—),男,博士,教授。
参考文献:

 [1] MANTHIRAM A, FU Y Z, SU Y S. Challenges and prospects of lithium-sulfur batteries [J]. Accounts Chem Res, 2013, 46(5): 1125–1134.

[2] WANG H L, YANG Y, LIANG Y Y, et al. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability [J]. Nano Lett, 2011, 11(7): 2644–2647.
[3] SONG M K, ZHANG Y, CAIRNS E J. A long-life, high-rate lithium/sulfur cell: A multifaceted approach to enhancing cell performance [J]. Nano Lett, 2013, 13(12): 5891–5899.
[4] QIU Y, LI W, ZHAO W, et al. High-rate, ultra long cycle-life lithium/sulfur batteries enabled by nitrogen-doped graphene [J]. Nano Lett, 2014, 14(8): 4821–4827.
[5] ZHAO M Q, ZHANG Q, HUANG J Q, et al. Unstacked double-layer templated graphene for high-rate lithium-sulphur batteries [J]. Nat Commun, 2014, 5(5): 3410–3413
[6] ZHENG G Y, YANG Y, CHA J J, et al. Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries [J]. Nano Lett, 2011, 11(10): 4462–4467.
[7] ZHENG G Y, ZHANG Q F, CHA J J, et al. Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries [J]. Nano Lett, 2013, 13(3): 1265–1270.
[8] LI W Y, LIANG Z, LU Z D, et al. A sulfur cathode with pomegranate-like cluster structure [J]. Adv Energy Mater, 2015, 5(16): 1500211.
[9] LI W Y, ZHANG Q F, ZHENG G Y, et al. Understanding the role of different conductive polymers in improving the nanostructured sulfur cathode performance [J]. Nano Lett, 2013, 13(11): 5534–5540.
[10] XIAO L F, CAO Y L, XIAO J, et al. A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium-sulfur batteries with long cycle life [J]. Adv Mater, 2012, 24(9): 1176-1181.
[11] ZHI W S, LI W, CHA J J, et al. Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium- sulphur batteries [J]. Nat Commun, 2013, 4(4): 1331-1331.
[12] TAO X, WANG J, YING Z, et al. Strong sulfur binding with conducting magneli-phase TinO2n-1 nanomaterials for improving lithium-sulfur batteries [J]. Nano Lett, 2014, 14(9): 5288–5294.
[13] LIANG X, HART C, PANG Q, et al. A highly efficient polysulfide mediator for lithium-sulfur batteries [J]. Nat Commun, 2015, 6: 5682–5685.
[14] LI Z, ZHANG J, LOU X W. Hollow carbon nanofibers filled with MnO2 nanosheets as efficient sulfur hosts for lithium-sulfur batteries [J]. Angew Chem Int Ed, 2015, 54(44): 12886–12890.
[15] LIANG X, GARSUCH A, NAZAR L F. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries [J]. Angew Chem Int Ed, 2015, 54(13): 3907–3911.
[16] PENG H J, ZHANG G, CHEN X, et al. Enhanced electrochemical kinetics on conductive polar mediators for lithium-sulfur batteries [J]. Angew Chem Int Ed, 2016, 55(42): 12990–12995.
[17] SUN Z, ZHANG J, YIN L, et al. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries [J]. Nat Commun, 2017, 8: 14627.
[18] ZHAO M Q, LIU X F, ZHANG Q, et al. Graphene/single-walled carbon nanotube hybrids: one-step catalytic growth and applications for high-rate Li-S batteries [J]. ACS Nano, 2012, 6(12): 10759–10769.
[19] PENG H J, HUANG J Q, ZHAO M Q, et al. Nanoarchitectured graphene/CNT@porous carbon with extraordinary electrical conductivity and interconnected micro/mesopores for lithium- sulfur batteries [J]. Adv Funct Mater, 2014, 24(19): 2772–2781.
[20] TANG C, ZHANG Q, ZHAO M Q, et al. Nitrogen-doped aligned carbon nanotube/graphene sandwiches: facile catalytic growth on bifunctional natural catalysts and their applications as scaffolds for high-rate lithium-sulfur batteries [J]. Adv Mater, 2014, 26(35): 6100–6105.
[21] LI Y J, FAN J M, ZHENG M S, et al. A novel synergistic composite with multi-functional effects for high-performance Li-S batteries [J]. Energy Environ Sci, 2016, 9(6): 1998–2004.
[22] EVERS S, NAZAR L F, New approaches for high energy density lithium-sulfur battery cathodes [J]. Accounts Chem Res, 2013, 46(5): 1135–1143.
[23] WANG D W, ZENG Q C, ZHOU G M, et al. Carbon-sulfur composites for Li-S batteries: status and prospects [J]. J Mater Chem A, 2013, 1(33): 9382–9394.
[24] YIN Y X, XIN S, GUO Y G, et al. Lithium-sulfur batteries: electrochemistry, materials, and prospects [J]. Angew Chem Int Ed, 2013, 52(50): 13186–13200.
[25] LI Z, HUANG Y, YUAN L, et al. Status and prospects in sulfur-carbon composites as cathode materials for rechargeable lithium-sulfur batteries [J]. Carbon, 2015, 92: 41–63.
[26] WANG J G, XIE K, WEI B. Advanced engineering of nanostructured carbons for lithium-sulfur batteries [J]. Nano Energy, 2015, 15: 413–444.
[27] KANG W, DENG N, JU J, et al. A review of recent developments in rechargeable lithium-sulfur batteries [J]. Nanoscale, 2016, 8(37): 16541–16588
[28] ZHANG Y, LI K, LI H, et al. High sulfur loading lithium-sulfur batteries based on a upper current collector electrode with lithium-ion conductive polymers [J]. J Mater Chem A, 2017, 5(1): 97–101.
[29] KANG H S and SUN Y K. Freestanding bilayer carbon-sulfur cathode with function of entrapping polysulfide for high performance Li-S batteries [J]. Adv Funct Mater, 2016, 26(8): 1225–1232.
[30] YU S-H, LEE B, CHOI S, et al. Enhancement of electrochemical properties by polysulfide trapping in a graphene-coated sulfur cathode on patterned current collector [J]. Chem Commun, 2016, 52(15): 3203–3206.
[31] SHAIBANI M, AKBARI A, SHEATH P, et al. Suppressed polysulfide crossover in Li-S batteries through a high-flux graphene oxide membrane supported on a sulfur cathode [J]. ACS Nano, 2016, 10(8): 7768–7779.
[32] XIAO Z, YANG Z, WANG L, et al. A lightweight TiO2/graphene interlayer, applied as a highly effective polysulfide absorbent for fast, long-life lithium-sulfur batteries [J]. Adv Mater, 2015, 27(18): 2891–2898.
[33] HUA W, YANG Z, NIE H, et al. Polysulfide-scission reagents for the suppression of the shuttle effect in lithium-sulfur batteries [J]. ACS Nano, 2017, 11(2): 2209–2218.
[34] ZHANG K, LI J, LI Q, et al. Improvement on electrochemical performance by electrodeposition of polyaniline nanowires at the top end of sulfur electrode [J]. Appl Surf Sci, 2013, 285: 900–906.
[35] MA G, WEN Z, JIN J, et al. Enhanced cycle performance of Li-S battery with a polypyrrole functional interlayer [J]. J Power Sources, 2014, 267: 542–546.
[36] NIU S, LV W, ZHOU G, et al. Electrostatic-spraying an ultrathin, multifunctional and compact coating onto a cathode for a long-life and high-rate lithium-sulfur battery [J]. Nano Energy, 2016, 30: 138–145.
[37] YU M, WANG A, TIAN F, et al. Dual-protection of a graphene-sulfur composite by a compact graphene skin and an atomic layer deposited oxide coating for a lithium-sulfur battery [J]. Nanoscale, 2015, 7(12): 5292–5298.
[38] JIN J, WEN Z, WANG Q, et al. Protected sulfur cathode with mixed conductive coating layer for lithium sulfur battery [J]. JOM, 2016, 68(10): 2601–2606.
[39] KIM J H, CHOI J, SEO J, et al. Two-dimensional Nafion nanoweb anion-shield for improved electrochemical performances of lithium- sulfur batteries [J]. J Mater Chem A, 2016, 4(29): 11203–11206.
[40] SU Y S, MANTHIRAM A. Lithium-sulphur batteries with a microporous carbon paper as a bifunctional interlayer [J]. Nat Commun, 2012, 3(6): 1166.
[41] SU Y S and MANTHIRAM A, A new approach to improve cycle performance of rechargeable lithium-sulfur batteries by inserting a free-standing MWCNT interlayer [J]. Chem Commun, 2012, 48(70): 8817–8819.
[42] ZU C, SU Y S, FU Y, et al. Improved lithium-sulfur cells with a treated carbon paper interlayer [J]. Phys Chem Chem Phy, 2013, 15(7): 2291–2297.
[43] CHUNG S H, MANTHIRAM A. Carbonized eggshell membrane as a natural polysulfide reservoir for highly reversible Li-S batteries [J]. Adv Mater, 2014, 26(9): 1360–1365.
[44] CHUNG S-H, MANTHIRAM A, A hierarchical carbonized paper with controllable thickness as a modulable interlayer system for high performance Li-S batteries [J]. Chem Commun, 2014, 50(32): 4184–4187.
[45] SINGHAL R, CHUNG S-H, MANTHIRAM A, et al. A free-standing carbon nanofiber interlayer for high-performance lithium-sulfur batteries [J]. J Mater Chem A, 2015, 3(8): 4530–4538.
[46] GUO Y, ZHAO G, WU N, et al. Efficient synthesis of graphene nanoscrolls for fabricating sulfur-loaded cathode and flexible hybrid interlayer toward high-performance Li-S batteries [J]. ACS Appl Mater Interfaces, 2016, 8(50): 34185–34193.
[47] CHUNG S H, MANTHIRAM A. A natural carbonized leaf as polysulfide diffusion inhibitor for high-performance lithium-sulfur battery cells [J]. Chemsuschem, 2014, 7(6): 1655–1661.
[48] VIZINTIN A, PATEL M U M, GENORIO B, et al. Effective separation of lithium anode and sulfur cathode in lithium-sulfur batteries [J]. Chemelectrochem, 2014, 1(6): 1040–1045.
[49] WANG L, YANG Z, NIE H, et al. A lightweight multifunctional interlayer of sulfur-nitrogen dual-doped graphene for ultrafast, long-life lithium-sulfur batteries [J]. J Mater Chem A, 2016, 4(40): 15343–15352.
[50] XING L B, XI K, LI Q, et al. Nitrogen, sulfur-codoped graphene sponge as electroactive carbon interlayer for high-energy and-power lithium-sulfur batteries [J]. J Power Sources, 2016, 303: 22–28.
[51] HUANG J Q, XU Z L, ABOUALI S, et al. Porous graphene oxide/carbon nanotube hybrid films as interlayer for lithium-sulfur batteries [J]. Carbon, 2016, 99: 624–632.
[52] YAN N, YANG X, ZHOU W, et al. Fabrication of a nano-Li+-channel interlayer for high performance Li-S battery application [J]. RSC Adv, 2015, 5(33): 26273–26280.
[53] MA G, WEN Z, WANG Q, et al. Enhanced performance of lithium sulfur battery with self-assembly polypyrrole nanotube film as the functional interlayer [J]. J Power Sources, 2015, 273: 511–516.
[54] ZHANG W, LIN C, CONG S, et al. W18O49 nanowire composites as novel barrier layers for Li-S batteries based on high loading of commercial micro-sized sulfur [J]. RSC Adv, 2016, 6(18): 15234–15239.
[55] HAN X, XU Y, CHEN X, et al. Reactivation of dissolved polysulfides in Li-S batteries based on atomic layer deposition of Al2O3 in nanoporous carbon cloth [J]. Nano Energy, 2013, 2(6): 1197–1206.
[56] ZHAO T, YE Y, PENG X, et al. Advanced lithium-sulfur batteries enabled by a bio-inspired polysulfide adsorptive brush [J]. Adv Funct Mater, 2016, 26(46): 8418–8426.
[57] ZHANG Z, LAI Y, ZHANG Z, et al. Al2O3-coated porous separator for enhanced electrochemical performance of lithium sulfur batteries [J]. Electrochim Acta, 2014, 129: 55–61.
[58] ZHUANG T Z, HUANG J Q, PENG H J, et al. Rational integration of polypropylene/graphene oxide/nafion as ternary-layered separator to retard the shuttle of polysulfi des for lithium-sulfur batteries [J]. Small, 2016, 12(3): 381–389.
[59] CHANG C H, CHUNG S H, MANTHIRAM A. Effective stabilization of a high-loading sulfur cathode and a lithium-metal anode in Li-S batteries utilizing SWCNT-modulated separators [J]. Small, 2016, 12(2): 174–179.
[60] CHENG X, WANG W, WANG A, et al. Oxidized multiwall carbon nanotube modified separator for high performance lithium-sulfur batteries with high sulfur loading [J]. RSC Adv, 2016, 6(92): 89972–89978.
[61] ZHU J, GE Y, KIM D, et al. A novel separator coated by carbon for achieving exceptional high performance lithium-sulfur batteries [J]. Nano Energy, 2016, 20: 176–184.
[62] BALACH J, JAUMANN T, KLOSE M, et al. Improved cycling stability of lithium-sulfur batteries using a polypropylene-supported nitrogen-doped mesoporous carbon hybrid separator as polysulfide adsorbent [J]. J Power Sources, 2016, 303: 317–324.
[63] MA G, HUANG F, WEN Z, et al. Enhanced performance of lithium sulfur batteries with conductive polymer modified separators [J]. J Mater Chem A, 2016, 4(43): 16968–16974.
[64] ZHU J, CHEN C, LU Y, et al. Highly porous polyacrylonitrile/ graphene oxide membrane separator exhibiting excellent anti-self- discharge feature for high-performance lithium-sulfur batteries [J]. Carbon, 2016, 101: 272–280.
[65] LUO L, CHUNG S H, MANTHIRAM A. A trifunctional multi-walled carbon nanotubes/ polyethylene glycol (MWCNT/PEG)- coated separator through a layer-by-layer coating strategy for high-energy Li-S batteries [J]. J Mater Chem A, 2016, 4(43): 16805–16811.
[66] CHANG C H, CHUNG S H, MANTHIRAM A. Ultra-lightweight PANi NF/MWCNT-functionalized separators with synergistic suppression of polysulfide migration for Li-S batteries with pure sulfur cathodes [J]. J Mater Chem A, 2015, 3(37): 18829–18834
[67] LI J, HUANG Y, ZHANG S, et al. Decoration of silica nanoparticles on polypropylene separator for lithium-sulfur batteries [J]. ACS Appl Mater Interfaces, 2017, 9(8): 7499–7504.
[68] CHUNG S H and MANTHIRAM A. Bifunctional separator with a light-weight carbon-coating for dynamically and statically stable lithium-sulfur batteries [J]. Adv Funct Mater, 2014, 24(33): 5299–5306.
[69] ZHOU G, PEI S, LI L, et al. A graphene-pure-sulfur sandwich structure for ultrafast, long-life lithium-sulfur batteries [J]. Adv Mater, 2014, 26(4): 625–631.
[70] YAO H, YAN K, LI W, et al. Improved lithium-sulfur batteries with a conductive coating on the separator to prevent the accumulation of inactive S-related species at the cathode-separator interface [J]. Energy Environ Sci, 2014, 7(10): 3381–3390.
[71] LIU F, XIAO Q, WU H B, et al. Regenerative polysulfide-scavenging layers enabling lithium-sulfur batteries with high energy density and prolonged cycling life [J]. ACS Nano, 2017, 11(3): 2697–2705.
[72] ZENG F, JIN Z, YUAN K, et al. High performance lithium-sulfur batteries with a permselective sulfonated acetylene black modified separator [J]. J Mater Chem A, 2016, 4(31): 12319–12327.
[73] LU Y, GU S, GUO J, et al. Sulfonic groups originated dual-functional interlayer for high performance lithium-sulfur battery [J]. ACS Appl Mater Interfaces, 2017, 9(17): 14878–14888.
[74] SONG J, YU Z, GORDIN M L, et al. Advanced sulfur cathode enabled by highly crumpled nitrogen-doped graphene sheets for high-energy-density lithium-sulfur batteries [J]. Nano Lett, 2016, 16(2): 864–870.
[75] SUN J, SUN Y, PASTA M, et al. Entrapment of polysulfides by a black-phosphorus-modified separator for lithium-sulfur batteries [J]. Adv Mater, 2016, 28(44): 9797–9803.
[76] FAN C Y, YUAN H Y, LI H H, et al. The effective design of a polysulfide-trapped separator at the molecular level for high energy density Li-S batteries [J]. ACS Appl Mater Interfaces, 2016, 8(25): 16108–16115.
[77] AHN W, LIM S N, LEE D U, et al. Interaction mechanism between a functionalized protective layer and dissolved polysulfide for extended cycle life of lithium sulfur batteries [J]. J Mater Chem A, 2015, 3(18): 9461–9467
[78] WANG Q, JIN J, WU X, et al. A shuttle effect free lithium sulfur battery based on a hybrid electrolyte [J]. Phys Chem Chem Phys, 2014, 16(39): 21225–21229.
[79] HAN F, YUE J, FAN X, et al. High-performance all-solid-state lithium-sulfur battery enabled by a mixed-conductive Li2S nanocomposite [J]. Nano Lett, 2016, 16(7): 4521–4527.
[80] LIU Z, BERTOLIN S, BALBUENA, P B, et al. Li2S film formation on lithium anode surface of Li-S batteries[J]. ACS Appl Mater Interfaces, 2016, 8 (7):4700–4708.
[81] LIANG X, WEN Z Y, LIU Y, et al. Improved cycling performances of lithium sulfur batteries with LiNO3-modified electrolyte [J]. J Power Sources, 2011, 196(22): 9839–9843.
[82] YAN C, CHENG X B, ZHAO C Z, et al. Lithium metal protection through in-situ formed solid electrolyte interphase in lithium-sulfur batteries: The role of polysulfides on lithium anode [J]. J Power Sources, 2016, 327: 212–220.
[83] SUO L, HU Y-S, LI H, et al. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries [J]. Nat Commun, 2013, 4: 1481–1481.
[84] LIN Z, LIU Z C, FU W J, et al. Phosphorous pentasulfide as a novel additive for high-performance lithium-sulfur batteries [J]. Adv Funct Mater, 2013, 23(8): 1064–1069.
[85] XIONG S Z, KAI X, HONG X B, et al. Effect of LiBOB as additive on electrochemical properties of lithium-sulfur batteries [J]. Ionics, 2012, 18(3): 249–254.
[86] WU F, QIAN J, CHEN R, et al. An effective approach to protect lithium anode and improve cycle performance for Li-S batteries [J]. ACS Appl Mater Interfaces, 2014, 6(17): 15542–15549.
[87] ZHENG J, GU M, CHEN H, et al. Ionic liquid-enhanced solid state electrolyte interface (SEI) for lithium-sulfur batteries [J]. J Mater Chem A, 2013, 1(29): 8464–8470.
[88] MA G Q, WEN Z Y, JIN J, et al. The enhanced performance of Li-S battery with P14YRTFSI-modified electrolyte [J]. Solid State Ion, 2014, 262: 174–178.
[89] WU F, LEE J T, NITTA N, et al. Lithium iodide as a promising electrolyte additive for lithium-sulfur batteries: mechanisms of performance enhancement [J]. Adv Mater, 2015, 27(1): 101–108.
[90] LIU S, LI G R, GAO X P. Lanthanum nitrate as electrolyte additive to stabilize the surface morphology of lithium anode for lithium-sulfur battery [J]. ACS Appl Mater Interfaces, 2016, 8(12): 7783–7789.
[91] DING F, XU W, GRAFF G L, et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism[J]. J Am Chem Soc, 2013, 135(11): 4450–4456.
[92] ZHENG G, LEE S W, LIANG Z, et al. Interconnected hollow carbon nanospheres for stable lithium metal anodes [J]. Nat Nanotechnol, 2014, 9(8): 618–623.
[93] YAN K, LEE H W, GAO T, et al. Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode [J]. Nano Lett, 2014, 14(10): 6016–6022.
[94] LI N W, YIN Y X, YANG C P, et al. An artificial solid electrolyte interphase layer for stable lithium metal anodes [J]. Adv Mater, 2016, 28(9): 1853–1858.
[95] ZHU B, JIN Y, HU X Z, et al. Poly(dimethylsiloxane) thin film as a stable interfacial layer for high-performance lithium-metal battery anodes [J]. Adv Mater, 2017, 29(2): 1603755(1-6)
[96] LEE Y M, CHOI N S, PARK J H, et al. Electrochemical performance of lithium/sulfur batteries with protected Li anodes [J]. J Power Sources, 2003. 119: 964–972.
[97] XIONG S Z, XIE K, DIAO Y, et al. Properties of surface film on lithium anode with LiNO3 as lithium salt in electrolyte solution for lithium-sulfur batteries [J]. Electrochim Acta, 2012, 83: 78–86.
[98] KOZEN A C, LIN C F, PEARSE A J, et al. Next-generation lithium metal anode engineering via atomic layer deposition [J]. ACS Nano, 2015, 9(6): 5884–5892.
[99] JING H K, KONG L L, LIU S, et al, Protected lithium anode with porous Al2O3 layer for lithium-sulfur battery[J]. J Mater Chem A, 2015, 3 (23): 12213–12219.
[100] MA G Q, WEN Z Y, WU M F, et al. A lithium anode protection guided highly-stable lithium-sulfur battery [J]. Chem Commun, 2014, 50(91): 14209–14212.
[101] MA G Q, WEN Z Y, WANG Q S, et al. Enhanced cycle performance of a Li-S battery based on a protected lithium anode [J]. J Mater Chem A, 2014, 2(45): 19355–19359.
[102] LUO J, LEE R C, JIN J T, et al. Dual-functional polymer coating on lithium anode for suppressing dendrite growth and polysulfide shuttling in Li-S batteries [J]. Chem Commun, 2017, 53:963–966.
[103] HUANG C, XIAO J, SHAO Y Y, et al. Manipulating surface reactions in lithium-sulphur batteries using hybrid anode structures [J]. Nat Commun, 2014, 5 (1): 3015(1–4).
[104] CHENG X B, PENG H J, HUANG J Q, et al. Dendrite-free nanostructured anode: entrapment of lithium in a 3D fibrous matrix for ultra-stable lithium-sulfur batteries [J]. Small, 2014, 10(21): 4257–4263.
[105] BRUCKNER J, THIEME S, BOTTGER-HILLER F, et al. Carbon- based anodes for lithium sulfur full cells with high cycle stability [J]. Adv Funct Mater, 2014, 24(9): 1284–1289.
[106] JESCHULL F, BRANDELL D, EDSTROM K, et al. A stable graphite negative electrode for the lithium-sulfur battery [J]. Chem Commun, 2015, 51(96): 17100–17103.
[107] YANG Y, MCDOWELL M T, JACKSON A, et al. New nanostructured Li2S/Silicon rechargeable battery with high specific energy [J]. Nano Lett, 2010, 10(4): 1486–1491.
[108] LEE S K, OH S M, PARK E, et al. Highly cyclable lithium-sulfur batteries with a dual-type sulfur cathode and a lithiated Si/SiOx nanosphere anode [J]. Nano Lett, 2015, 15(5): 2863–2868.
[109] HASSOUN J and SCROSATI B, A high-performance polymer tin sulfur lithium ion battery [J]. Angew Chem Int Ed, 2010, 49(13): 2371–2374.
[110] LIU M, ZHOU D, JIANG H R, et al. A highly-safe lithium-ion sulfur polymer battery with SnO2 anode and acrylate-based gel polymer electrolyte [J]. Nano Energy, 2016, 28: 97–105.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com