首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
医用可降解镁合金表面改性研究进展
作者:刘宣勇 彭峰 
单位:中国科学院上海硅酸盐研究所 高性能陶瓷和超微结构国家重点实验室 上海 200050 
关键词:镁合金 涂层 生物相容性 生物降解性 
分类号:TG178
出版年,卷(期):页码:2017,45(10):0-0
DOI:
摘要:

 生物医用可降解镁合金具有良好的机械性能、生物可降解性且降解产物可随人体新陈代谢排出体外,被誉为“下一代生物医用金属材料”。然而,过快的降解速率制约着镁合金在临床上的应用。本文从生物降解性和生物相容性的角度,综述医用可降解镁合金表面改性研究进展。重点介绍医用可降解镁合金表面微弧氧化涂层、Ca–P基涂层和惰性陶瓷涂层等生物陶瓷涂层的制备及其优缺点。最后,基于医用镁合金的临床应用要求和现有表面改性技术特点,展望医用可降解镁合金表面改性的未来发展方向。

 
基金项目:
国家杰出青年科学基金(51525207)项目。
作者简介:
刘宣勇(1974—),男,博士,研究员。
参考文献:

 [1] ZHAO D, WITTE F, LU F, et al. Current status on clinical applications of magnesium-based orthopaedic implants: A review from clinical translational perspective [J]. Biomaterials, 2017, 112: 287–302.

[2] TIAN P, LIU X. Surface modification of biodegradable magnesium and its alloys for biomedical applications [J]. Regen Biomater, 2015, 2(2): 135–151.
[3] MARTINEZ SANCHEZ A H, LUTHRINGER B J, FEYERABEND F, et al. Mg and Mg alloys: how comparable are in vitro and in vivo corrosion rates? A review [J]. Acta Biomater, 2015, 13: 16–31.
[4] HAN P, CHENG P, ZHANG S, et al. In vitro and in vivo studies on the degradation of high-purity Mg (99.99wt.%) screw with femoral intracondylar fractured rabbit model [J]. Biomaterials, 2015, 64:  57–69.
[5] WANG J, TANG J, ZHANG P, et al. Surface modification of magnesium alloys developed for bioabsorbable orthopedic implants: a general review [J]. J Biomed Mater Res B: Appl Biomater, 2012,  100(6): 1691–1701.
[6] AGARWAL S, CURTIN J, DUFFY B, et al. Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications [J]. Mater Sci Eng C, 2016, 68: 948–963.
[7] SONG G, ATRENS A. Understanding magnesium corrosion—A framework for improved alloy performance [J]. Adv Eng Mater, 2003, 5(12): 837–858.
[8] 曾荣昌, 孔令鸿, 陈君, 等. 医用镁合金表面改性研究进展[J]. 中国有色金属学报, 2011, 20(1): 35–43.
ZENG Rongchang, KONG Linhong, CHEN Jun, et al. Chin J Nonferrous Met (in Chinese), 2011, 20(1): 35–43.
[9] GU X N,LI S S, LI X M, et al. Magnesium based degradable biomaterials: A review [J]. Front Mater Sci, 2014, 8(3): 200–318.
[10] ZHU Y, WU G, ZHANG Y H, et al. Growth and characterization of Mg(OH)2 film on magnesium alloy AZ31 [J]. Appl Surf Sci, 2011, 257(14): 6129–6137.
[11] FENG J, CHEN Y, LIU X, et al. In-situ hydrothermal crystallization Mg(OH)2 films on magnesium alloy AZ91 and their corrosion resistance properties [J]. Mater Chem Phys, 2013, 143(1): 322–329.
[12] PENG F, LI H, WANG D, et al. Enhanced corrosion resistance and biocompatibility of magnesium alloy by Mg-Al-layered double hydroxide [J]. ACS Appl Mater Interface, 2016, 8(51): 35033–36044.
[13] LIN J K, UAN J Y, WU C P, et al. Direct growth of oriented Mg–Fe layered double hydroxide (LDH) on pure Mg substrates and in vitro corrosion and cell adhesion testing of LDH-coated Mg samples [J]. J Mater Chem, 2011, 21(13): 5011–5020.
[14] GU X N, ZHENG W, CHENG Y, et al. A study on alkaline heat treated Mg-Ca alloy for the control of the biocorrosion rate [J]. Acta Biomater, 2009, 5(7): 2790–2799.
[15] PAN C J, PANG L Q, HOU Y, et al. Improving corrosion resistance and biocompatibility of magnesium alloy by sodium hydroxide and hydrofluoric acid treatments [J]. Appl Sci, 2016, 7(1): 33–49.
[16] SUN W, ZHANG G, TAN L, et al. The fluoride coated AZ31B magnesium alloy improves corrosion resistance and stimulates bone formation in rabbit model [J]. Mater Sci Eng C, 2016, 63: 506–511.
[17] WANG Z, GUO Y. Corrosion resistance and adhesion of poly(L-lactic acid)/MgF2 composite coating on AZ31 magnesium alloy for biomedical application [J]. Russ J Non-Ferrous Met, 2016, 57(4): 381–388.
[18] HOU S S, ZHANG R R, GUAN S K, et al. In vitro corrosion behavior of Ti-O film deposited on fluoride-treated Mg–Zn–Y–Nd alloy [J]. Appl Surf Sci, 2012, 258(8): 3571–3577.
[19] JO J H, KANG B G, SHIN K S, et al. Hydroxyapatite coating on magnesium with MgF2 interlayer for enhanced corrosion resistance and biocompatibility [J]. J Mater Sci Mater Med, 2011, 22(11): 2437–4347.
[20] CHEN D C, WU J F, LIANG Y Q, et al. Preparation of cerium oxide based environment-friendly chemical conversion coating on magnesium alloy with additives [J]. Trans Nonferrous Met Soc China, 2011, 21(8): 1905–1910.
[21] SUN J, WANG G. Preparation and corrosion resistance of cerium conversion coatings on AZ91D magnesium alloy by a cathodic electrochemical treatment [J]. Surf Coat Technol, 2014, 254: 42–48.
[22] LI L, LEI J, YU S, et al. Formation and characterization of cerium conversion coatings on magnesium alloy [J]. J Rare Earths, 2008, 26(3): 383–387.
[23] CUI X, YANG Y, LIU E, et al. Corrosion behaviors in physiological solution of cerium conversion coatings on AZ31 magnesium alloy [J]. Appl Surf Sci, 2011, 257(23): 9703–9709.
[24] HAN B. Preparation of yttrium-based rare earth conversion coating and its effect on corrosion resistance of AZ91D magnesium alloy [J]. Int J Electrochem Sci, 2017, 374–385.
[25] JAMALI S S, MOULTON S E, TALLMAN D E, et al. Corrosion protection afforded by praseodymium conversion film on Mg alloy AZNd in simulated biological fluid studied by scanning electrochemical microscopy [J]. J Electroanal Chem, 2015, 739: 211–217.
[26] RUDD A L, BRESLIN C B, MANSFELD F. The corrosion protection afforded by rare earth conversion coatings applied to magnesium [J]. Corros Sci, 2000, 42(2): 275–288.
[27] NěMCOV  A, KUBěNA I, ŠM D M, et al. Effect of current density and behaviour of second phases in anodizing of a Mg-Zn-RE alloy in a fluoride/glycerol/water electrolyte [J]. J Solid State Electrochem, 2015, 20(4): 1155–1165.
[28] HABAZAKI H, KATAOKA F, SHAHZAD K, et al. Growth of barrier-type anodic films on magnesium in ethylene glycol electrolytes containing fluoride and water [J]. Electrochim, Acta, 2015, 179: 402–410.
[29] ZHOU Y R, ZHANG S, NIE L L, et al. Electrodeposition and corrosion resistance of Ni–P–TiN composite coating on AZ91D magnesium alloy [J]. Trans Nonferrous Met Soc China, 2016, 26(11): 2976–2987.
[30] LIU Y, XUE J, LUO D, et al. One-step fabrication of biomimetic superhydrophobic surface by electrodeposition on magnesium alloy and its corrosion inhibition [J]. J Colloid Interface Sci, 2017,491: 313–320.
[31] SANKARA NARAYANAN T S N, PARK I S,  LEE M H. Strategies to improve the corrosion resistance of microarc oxidation (MAO) coated magnesium alloys for degradable implants: Prospects and challenges [J]. Prog Mater Sci, 2014, 60: 1-71.
[32] KANNAN M B. Electrochemical deposition of calcium phosphates on magnesium and its alloys for improved biodegradation performance: A review [J]. Surf Coat Technol, 2016, 301: 36–41.
[33] 林锐, 刘朝辉, 王飞, 等. 镁合金表面改性技术现状研究 [J]. 表面技术, 2016, 04): 124–131.
LIN Rui, Liu Chaohui, WANG Fei, et al. Surf Technol (in Chenese), 2016, 04): 124–131.
[34] JOVOVIC J, STOJADINOVIC S, SISOVIC N M, et al. Spectroscopic study of plasma during electrolytic oxidation of magnesium- and aluminium-alloy [J]. J Quant Spectrosc Radiat Transfer, 2012, 113(15): 1928–1937.
[35] ZHANG J, GU Y H, GUO Y J, et al. Electrochemical behavior of biocompatible AZ31 magnesium alloy in simulated body fluid [J]. J Mater Sci, 2012, 47(13): 5197–5204.
[36] LV G H, CHEN H, GU W C, et al. Effects of current frequency on the structural characteristics and corrosion property of ceramic coatings formed on magnesium alloy by PEO technology [J]. J Mater Process Technol, 2008, 208(1/3): 9–13.
[37] LEE S-J, DO L H T. Effects of copper additive on micro-arc oxidation coating of LZ91 magnesium-lithium alloy [J]. Surf Coat Technol, 2016, 307: 781–789.
[38] TIAN P, PENG F, WANG D, et al. Corrosion behavior and cytocompatibility of fluoride-incorporated plasma electrolytic oxidation coating on biodegradable AZ31 alloy [J]. Regenerat Biomater, 2016, 2(2): 135–151.
[39] DONG K, SONG Y, SHAN D, et al. Corrosion behavior of a self-sealing pore micro-arc oxidation film on AM60 magnesium alloy [J]. Corros Sci, 2015, 100: 275–283.
[40] CUI X-J, LIU C-H, YANG R-S, et al. Self-sealing micro-arc oxidation coating on AZ91D Mg alloy and its formation mechanism [J]. Surf Coat Technol, 2015, 269: 228–237.
[41] OGISO M, YAMASHITA Y, MATSUMOTO T. The process of physical weakening and dissolution of the HA-coated implant in bone and soft tissue [J]. J Dental Res, 1998, 77(6): 1426–1434.
[42] CHARRIERE E, TERRAZZONI S, PITTET C, et al. Mechanical characterization of brushite and hydroxyapatite cements [J]. Biomaterials, 2001, 22(21): 2937–2945.
[43] XIE J, RILEY C, KUMAR M, et al. FTIR/ATR study of protein adsorption and brushite transformation to hydroxyapatite [J]. Biomaterials, 2002, 23(17): 3609–3616.
[44] YANG H, XIA K, WANG T, et al. Growth, in vitro biodegradation and cytocompatibility properties of nano-hydroxyapatite coatings on biodegradable magnesium alloys [J]. J Alloy Compd, 2016, 672: 366–373.
[45] GENG F, TAN L L, JIN X X, et al. The preparation, cytocompatibility, and in vitro biodegradation study of pure beta-TCP on magnesium [J]. J Mater Sci Mater Med, 2009, 20(5): 1149–1157.
[46] REN Y, ZHOU H, NABIYOUNI M, et al. Rapid coating of AZ31 magnesium alloy with calcium deficient hydroxyapatite using microwave energy [J]. Mater Sci Eng C, 2015, 49: 364–72.
[47] WANG Y P, ZHU Z J, XU X Y, et al. Improved corrosion resistance and biocompatibility of a calcium phosphate coating on a magnesium alloy for orthopedic applications [J]. Eur J Inflamm, 2016, 14(3): 169–183.
[48] YANOVSKA A, KUZNETSOV V, STANISLAVOV A, et al. Calcium–phosphate coatings obtained biomimetically on magnesium substrates under low magnetic field [J]. Appl Surf Sci, 2012, 258(22): 8577–8584.
[49] LI J N, SONG Y, ZHANG S X, et al. In vitro responses of human bone marrow stromal cells to a fluoridated hydroxyapatite coated biodegradable Mg-Zn alloy [J]. Biomaterials, 2010, 31(22): 5782–5788.
[50] WANG H, ZHU S, WANG L, et al. Formation mechanism of Ca-deficient hydroxyapatite coating on Mg–Zn–Ca alloy for orthopaedic implant [J]. Appl Surf Sci, 2014, 307: 92–100.
[51] SURMENEV R A. A review of plasma-assisted methods for calcium phosphate-based coatings fabrication [J]. Surf Coat Technol, 2012, 206(8/9): 2035–2056.
[52] YANG J X, JIAO Y P, CUI F Z, et al. Modification of degradation behavior of magnesium alloy by IBAD coating of calcium phosphate [J]. Surf Coat Technol, 2008, 202(22/23): 5733–5736.
[53] 高亚丽, 马广超, 张海波, 等. 医用镁合金激光熔覆羟基磷灰石涂层生物相容性研究[J]. 应用激光, 2014, (6): 528–532.
GAO Yali, MA Guangchao, ZHANG Haibo, et al. Appl Laser (in Chinese), 2014, (6): 528–532.
[54] NOORAKMA A C W, ZUHAILAWATI H, AISHVARYA V, et al. Hydroxyapatite-coated magnesium-based biodegradable alloy: Cold spray deposition and simulated body fluid studies [J]. J Mater Eng Perform, 2013, 22(10): 2997–3004.
[55] ISKANDAR M E, ASLANI A, LIU H. The effects of nanostructured hydroxyapatite coating on the biodegradation and cytocompatibility of magnesium implants [J]. J Biomed Mater Res A, 2013, 101(8): 2340–2354.
[56] ROJAEE R, FATHI M, RAEISSI K. Controlling the degradation rate of AZ91 magnesium alloy via sol-gel derived nanostructured hydroxyapatite coating [J]. Mater Sci Eng C, 2013, 33(7): 3817–3825.
[57] LIU J, XI T. Enhanced anti-corrosion ability and biocompatibility of PLGA coatings on MgZnYNd alloy by BTSE-APTES pre-treatment for cardiovascular stent [J]. J Mater Sci Technol, 2016, 32(9): 845–857.
[58] ZHAO J, CHEN L-J, YU K, et al. Effects of chitosan coating on biocompatibility of Mg–6%Zn–10%Ca3(PO4)2 implant [J]. Trans Nonferrous Met Soc China, 2015, 25(3): 824–831.
[59] CHEN S, ZHANG J, CHEN Y, et al. Application of phenol/amine copolymerized film modified magnesium alloys: Anticorrosion and surface biofunctionalization [J]. ACS Appl Mater Interfaces, 2015, 7(44): 24510–2512.
[60] XIN Y, LIU C, ZHANG W, et al. Electrochemical behavior Al2O3∕Al coated surgical AZ91 magnesium alloy in simulated body fluids [J]. J Electrochem Soc, 2008, 155(5): C178–C182.
[61] ÇELIK ?. Structure and surface properties of Al2O3–TiO2 ceramic coated AZ31 magnesium alloy [J]. Ceram Int, 2016, 42(12): 13659–13663.
[62] SUN L, CHOW L C. Preparation and properties of nano-sized calcium fluoride for dental applications [J]. Dent Mater, 2008, 24(1): 111–116.
[63] ZENG R C, DIETZEL W, CHEN J, et al. Corrosion behavior of TiO2 coating on magnesium alloy AM60 in Hank’s solution [J]. Key Eng Mater, 2008, 373-374: 609–612.
[64] FUJINO T, MATZUDA T. Synthetic process of environmentally-friendly TiO2 coating on magnesium by chemical conversion treatment [J]. Mater Trans, 2006, 47(9): 2335–2340.
[65] CHEN J, YANG P, LIAO Y, et al. Effect of the duration of UV irradiation on the anticoagulant properties of titanium dioxide films [J]. ACS Appl Mater Interfaces, 2015, 7(7): 4423–4432.
[66] JI M K, OH G, KIM J W, et al. Effects on antibacterial activity and osteoblast viability of non-thermal atmospheric pressure plasma and heat treatments of TiO2 nanotubes [J]. J Nanosci Nanotechnol, 2017, 17(4): 2312–2315.
[67] PLACEK L M, KEENAN T J, LI Y, et al. Investigating the effect of TiO2 on the structure and biocompatibility of bioactive glass [J]. J Biomed Mater Res B, 2016, 104(8): 1703–1712.
[68] AMARAVATHY, ROSE C, SATHIYANARAYANAN S, et al. Evaluation of in vitro bioactivity and MG63 Oesteoblast cell response for TiO2 coated magnesium alloys [J]. J Sol-Gel Sci Technol, 2012, 64(3): 694–703.
[69] CHEN S, GUAN S, CHEN B, et al. Corrosion behavior of TiO2 films on Mg–Zn alloy in simulated body fluid [J]. Appl Surf Sci, 2011, 257(9): 4464–4467.
[70] FUJITA R, SAKAIRI M, KIKUCHI T, et al. Corrosion resistant TiO2 film formed on magnesium by liquid phase deposition treatment [J]. Electrochim Acta, 2011, 56(20): 7180–7188.
[71] HOU S, MI L, WANG L, et al. Corrosion protection of Mg–Zn–Y–Nd alloy by flower-like nanostructured TiO2 film for vascular stent application [J]. J ChemTechnol Biotechnol, 2013, 88: 2062–2066.
[72] WAN G J, MAITZ M F, SUN H, et al. Corrosion properties of oxygen plasma immersion ion implantation treated magnesium [J]. Surf Coat Technol, 2007, 201(19/20): 8267–8272.
[73] H CHE D, BLAWERT C, CAVELLIER M, et al. Magnesium nitride phase formation by means of ion beam implantation technique [J]. Appl Surf Sci, 2011, 257(13): 5626–5633.
[74] XU R, YANG X, LI P, et al. Eelectrochemical properties and corrosion resistance of carbon-ion-implanted magnesium [J]. Corros Sci, 2014, 82: 173–179.
[75] LIU C, XIN Y, TIAN X, et al. Corrosion behavior of AZ91 magnesium alloy treated by plasma immersion ion implantation and deposition in artificial physiological fluids [J]. Thin Solid Films, 2007, 516(2/4): 422–427.
[76] JIN W, WU G, FENG H, et al. Improvement of corrosion resistance and biocompatibility of rare-earth WE43 magnesium alloy by neodymium self-ion implantation [J]. Corros Sci, 2015, 94: 142–155.
[77] WU G, XU R, FENG K, et al. Retardation of surface corrosion of biodegradable magnesium-based materials by aluminum ion implantation [J]. Appl Surf Sci, 2012, 258(19): 7651–7657.
[78] WU G, GONG L, FENG K, et al. Rapid degradation of biomedical magnesium induced by zinc ion implantation [J]. Mater Lett, 2011, 65(4): 661–663.
[79] ZHAO Y, WU G, LU Q, et al. Improved surface corrosion resistance of WE43 magnesium alloy by dual titanium and oxygen ion implantation [J]. Thin Solid Films, 2013, 529: 407–411.
[80] CHENG M, QIAO Y, WANG Q, et al. Dual ions implantation of zirconium and nitrogen into magnesium alloys for enhanced corrosion resistance, antimicrobial activity and biocompatibility [J]. Colloids Surf B, 2016, 148: 200–210.
[81] XU R, YANG X, SUEN K W, et al. Improved corrosion resistance on biodegradable magnesium by zinc and aluminum ion implantation [J]. Appl Surf Sci, 2012, 263: 608–612.
[82] TIAN P, LIU X, DING C. In vitro degradation behavior and cytocompatibility of biodegradable AZ31 alloy with PEO/HT composite coating [J]. Colloids Surf B, 2015, 128: 44–54.
[83] WEI Z, TIAN P, LIU X, et al. In vitro degradation, hemolysis, and cytocompatibility of PEO/PLLA composite coating on biodegradable AZ31 alloy [J]. J Biomed Mater Res B, 2015, 103(2): 342–354.
[84] WEI Z, TIAN P, LIU X, et al. Hemocompatibility and selective cell fate of polydopamine-assisted heparinized PEO/PLLA composite coating on biodegradable AZ31 alloy [J]. Colloids Surf B, 2014, 121: 451–60.
[85] TIAN P, XU D, LIU X. Mussel-inspired functionalization of PEO/PCL composite coating on a biodegradable AZ31 magnesium alloy [J]. Colloids Surf B, 2016, 141: 327–337.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com