[1] TRESSLER J F, ALKOY S, DOGAN A, et al. Functional composites for sensors, actuators and transducers [J]. Compos Part A–Appl S, 1997, 30(4): 477–482.
[2] 张东升. (K0.44Na0.52Li0.04)(Nb0.86Ta0.10Sb0.04)O3陶瓷的压电性能[J].硅酸盐学报, 2014, 42(4): 445–447.
ZHANG Dongsheng. J Chin Ceram Soc, 2014, 42(4): 445–447.
[3] LIU H, VEBER P, KORUZA J, et al. Influence of Ta5+ content on the crystallographic structure and electrical properties of [001]PC-oriented (Li, Na, K)(Nb, Ta)O3 single crystals [J]. Cryst Eng Comm, 2016, 18(12): 2081–2088.
[4] ZHANG S, LI F. High performance ferroelectric relaxor-PbTiO3 single crystals: Status and perspective [J]. J Appl Phys, 2012, 111(3):031301(1–50).
[5] OKAZAKI K, NARUSHIMA S. Electrical properties of the hot-pressed SbSI polycrystals [J]. J Ceram Soc Jpn, 1968, 76(869).
[6] YASUYOSHI S, HISAAKI T, TOSHIHIKO T, et al. Lead-free piezoceramics [J]. Nature, 2004, 432(4): 84–87.
[7] TAKENAKA T, K, S. Grain orientation and electrical properties of hot-forged Bi4Ti3O12 ceramics [J]. Jpn J Appl Phys, 1890, 19(1):31–39.
[8] TOSHIHIKO T. Texture engineering of electronic ceramics by the reactive-templated grain growth method [J]. J Ceram Soc Jpn, 2006, 114(5): 363–370.
[9] MESSING G L, TROLIER–MCKINSTRY S, SABOLSKY E M, et al. Templated grain growth of textured piezoelectric ceramics [J]. Crit Rev Solid State, 2004, 29(2): 45–96.
[10] ZENG J, LI Y, YANG Q, et al. Grain oriented CaBi4Ti4O15 piezoceramics prepared by the screen-printing multilayer grain growth technique [J]. J Eur Ceram Soc, 2005, 25(12): 2727–2730.
[11] RÖDEL J, WOOK J, KLAUS T P, et al. Perspective on the development of lead-free piezoceramics [J]. J Am Ceram Soc, 2009, 92(6): 1153–1177.
[12] CHANG Y, POTERALA S F, YANG Z, et al. Microstructure development and piezoelectric properties of highly textured CuO-doped KNN by templated grain growth [J]. J Mater Res, 2011, 25(04), 687–694.
[13] YAN Y, CHO K H, PRIYA S. Templated grain growth of<001>-textured 0.675Pb(Mg1/3Nb2/3)O3–0.325PbTiO3 piezoelectric ceramics for magnetic field sensors [J]. J Am Ceram Soc, 2011, 94(6): 1784–1793.
[14] CHANG Y, SUN Y, WU J, et al. Formation mechanism of highly [001]c textured Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 relaxor ferroelectric ceramics with giant piezoelectricity [J]. J Eur Ceram Soc, 2016, 36(8): 1973–1981.
[15] 方俊鑫, 殷之文. 电介质物理学[M]. 北京: 科学出版社, 1998.
[16] HENNINGS D F K, JANSSEN R, REYNEN P J L. Control of liquid-phase-enhanced discontinuous grain growth in barium titanate[J]. J Am Ceram Soc, 1987, 70(1): 23–27.
[17] 沈宗洋, 李敬锋. (Na, K)NbO3基无铅压电陶瓷的研究进展[J]. 硅酸盐学报, 2010, 38(3): 510–520.
SHEN Zongyang, LI Jingfeng. J Chin Ceram Soc, 2010, 38(3):510–520.
[18] 沈万程, 沈宗洋, 李月明, 等. 0.96(K0.49Na0.51–xLix)(Nb0.97Ta0.03)O3–0.04Bi0.5Na0.5ZrO3无铅压电陶瓷的结构与电性能[J]. 硅酸盐学报, 2016, 44(3): 367–374.
SHEN Wancheng, SHEN Zongyang, LI Yueming, et al. J Chin Ceram Soc, 2016, 44(3): 367–374.
[19] ZHENG T, WU J, XIAO D, et al. Composition-driven phase boundary and piezoelectricity in potassium–sodium niobate-based ceramics[J]. ACS Appl Mater Inter, 2015, 7(36): 20332–20341.
[20] CHANG Y, POTERALA S F, YANG Z, et al. <001> textured(K0.5Na0.5)(Nb0.97Sb0.03)O3 piezoelectric ceramics with high electromechanical coupling over a broad temperature range [J]. Appl Phys Lett, 2009, 95(23): 232905(1–3).
[21] HISAAKI T, YASUYOSHI S, YOSHIFUMI A, et al. Microstructural evolution of crystalline-oriented (K0.5Na0.5)NbO3 piezoelectric ceramics with a sintering aid of CuO [J]. J Am Ceram Soc, 2006, 89(6): 1951–1956.
[22] CHANG Y, POTERALA S, YANG Z, et al. Enhanced electromechanical properties and temperature stability of textured(K0.5Na0.5)NbO3-based piezoelectric ceramics [J]. J Am Ceram Soc, 2011, 94(8): 2494–2498.
[23] HAO J, BAI W, SHEN B, et al. Improved piezoelectric properties of(KxNa1–x)0.94Li0.06NbO3 lead-free ceramics fabricated by combining two-step sintering [J]. J Alloy Compd, 2012, 534: 13–19.
[24] CHO H J, KIM M H, SONG T K, et al. Piezoelectric and ferroelectric properties of textured (Na0.50K0.47Li0.03)(Nb0.8Ta0.2)O3 ceramics by using template grain growth method [J]. J Electroceram, 2013, 30(1/2): 72–76.
[25] KIM M S, LEE S C, KIM S W, et al. Effect of sintering time on reactive templated grain growth and electromechanical properties of NKLNT ceramics [J]. J Ceram Process Res, 2013, 14(2): 260–264.
[26] HUSSAIN A, KIM J S, SONG T K, et al. Fabrication of textured KNNT ceramics by reactive template grain growth using NN templates [J]. Curr Appl Phys, 2013, 13(6): 1055–1059.
[27] GUPTA S, BELIANINOV A, BARIS OKATAN M, et al. Fundamental limitation to the magnitude of piezoelectric response of<001>pc textured K0.5Na0.5NbO3 ceramic [J]. Appl Phys Lett, 2014, 104(17): 172902(1–5).
[28] LI L, BAI W, ZHANG Y, et al. The preparation and piezoelectric property of textured KNN-based ceramics with plate-like NaNbO3 powders as template [J]. J Alloy Compd, 2015, 622: 137–142.
[29] LIU B, LI P, SHRN B, et al. Enhanced piezoelectric properties and temperature-insensitive strain behavior of <001>–textured KNN-based ceramics [J]. Ceram Inter, 2017, 43: 8004–8009.
[30] 汪宁, 张波萍, 赵磊, 等. (Ba1–xCax)(Ti0.94Zr0.056Sn0.004)O3无铅压电陶瓷电学性能和Curie温度的协同调控[J]. 硅酸盐学报, 2016,44(12): 1686–1693.
WANG Ning, ZHANG Boping, ZHAO Lei, et al. J Chin Ceram Soc,2016, 44(12): 1686–1693.
[31] KROUTVAR M, DUCOMMUN Y, HEISS D, et al. Optically programmable electron spin memory using semiconductor quantum dots [J]. Nature, 2004, 432(7013): 81–84.
[32] TANG X G, CHEW K H, CHAN H L W. Diffuse phase transition and dielectric tunability of Ba(ZryTi1–y)O3 relaxor ferroelectric ceramics [J]. Acta Mater, 2004, 52(17): 5177–5183.
[33] YU Z, GUO R, BHALLA A S. Dielectric polarization and strain behavior of Ba(Ti0.92Zr0.08)O3 single crystals [J]. Mater Lett, 2002, 57(2): 349–354.
[34] LIU W, REN X. Large piezoelectric effect in Pb-free ceramics[J]. Phys Rev Lett, 2009, 103(25): 257602(1–4).
[35] BAI W, HAO J, SHEN B, et al. Processing optimization and piezoelectric properties of textured Ba(Zr, Ti)O3 ceramics [J]. J Alloy Compd, 2012, 536: 189–197.
[36] BAI W, SHEN B, FU F, et al. Fabrication and electrical properties of Ba(Zr, Ti)O3 textured ceramics by templated grain growth [J]. Jpn J Appl Phys, 2012, 51(1): 015503(1–5).
[37] YE S K, FUH J Y H, LU L. Structure and electrical properties of <001> textured (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 lead-free piezoelectric ceramics [J]. Appl Phys Lett, 2012, 100(25): 252906(1–4).
[38] HAUGEN A B, MOROZOV M I, JOHOSSON M, et al. Effect of crystallographic orientation in textured Ba0.92Ca0.08TiO3 piezoelectric ceramics [J]. J Appl Phys, 2014, 116(13): 134102(1–7).
[39] ZHAO Z, LI X, DAI Y, et al. Highly textured Ba0.85Ca0.15Ti0.90Zr0.10O3 ceramics prepared by reactive template grain growth process [J]. Mate Lett, 2016, 165: 131–134.
[40] LI M, LI L, ZANG J, et al. Donor-doping and reduced leakage current in Nb-doped Na0.5Bi0.5TiO3 [J]. Appl Phys Lett, 2015, 106:102904(1–5).
[41] CHU B J, CHEN D R, LI G R, et al. Electrical properties of Na1/2Bi1/2TiO3–BaTiO3 ceramics [J]. J Eur Ceram Soc, 2002, 22(13):2115–2121.
[42] BADARI N R, RAJEEV R. Electric-field-driven monoclinic-to-rhombohedral transformation in Na1/2Bi1/2TiO3 [J]. Phys Rev B, 2012, 86(13): 134103(1–4).
[43] AKSEL E, FORRESTER J S, JONES J L, et al. Monoclinic crystal structure of polycrystalline Na0.5Bi0.5TiO3 [J]. Appl Phys Lett, 2011, 98: 152901(1–3).
[44] 李玲, 朱满康, 郑木鹏, 等. Na0.5Bi0.5TiO3:ZnO无铅复相陶瓷的显微结构与铁电性能[J]. 硅酸盐学报, 2017, 45(5): 1–5.
LI Ling, ZHU Mankang, ZHENG Mupeng, et al. J Chin Ceram Soc, 2017, 45(5): 1–5.
[45] MAURYA D, ZHOU Y, YAN Y, et al. Synthesis mechanism of grain-oriented lead-free piezoelectric Na0.5Bi0.5TiO3–BaTiO3 ceramics with giant piezoelectric response [J]. J Mater Chem C, 2013, 1(11): 2102–2111.
[46] MAURYA D, PRAMANICK A, AN K, et al. Enhanced piezoelectricity and nature of electric-field induced structural phase transformation in textured lead-free piezoelectric Na0.5Bi0.5TiO3–BaTiO3 ceramics [J]. Appl Phys Lett, 2012, 100: 172906(1–5).
[47] ZHANG H, XU P, PATTERSON E, et al. Preparation and enhanced electrical properties of grain-oriented (Bi1/2Na1/2)TiO3-based lead-free incipient piezoceramics [J]. J Eur Ceram Soc, 2015, 35(9): 2501–2512.
|