首页期刊信息编委及顾问期刊发行联系方式使用帮助留言板ENGLISH
位置:首页 >> 正文
银系半导体光催化材料研究进展
作者: 
单位:1. 长沙学院环境光催化应用技术湖南省重点实验室 长沙 410022 2. 武汉理工大学材料复合新技术国家重点实验室 武汉 430070 
关键词: 银系半导体 光催化 可见光 
分类号:O643.36; O649.4; O644.11
出版年,卷(期):页码:2017,45(9):0-0
DOI:
摘要:

 银系半导体由于较窄的带隙和单质银的表面等离子体共振效应,普遍对可见光响应且具有理想的可见光光催化活性,在有机污染物降解、二氧化碳还原和杀毒灭菌等环境光催化领域具有广阔的应用前景。银离子可以与各种负离子或负离子基团形成种类繁多的银基卤化物、氧化物、硫化物和含氧酸盐等半导体光催化材料。银系半导体的光催化活性和稳定性高度取决于这些负离子或负离子基团的性质。综述了分别由卤族、硫族、氮族、碳族、硼族和过渡金属元素构成的负离子或负离子基团对银系半导体能带结构、光学吸收以及光催化活性的影响,探讨了提高银系半导体可见光光催化活性和稳定性的策略,并展望了未来的研究方向,从而有助于人们构建更高效的银系半导体光催化材料(体系)。

 

 Ag-based semiconductors commonly respond to visible light and exhibit the excellent photocatalytic activity under visible-light irradiation due to their narrow band gap and surface plasmon resonance (SPR) adsorption, thus having a promising application as Ag-based photocatalysts in organic pollutant degradation, dioxide carbon reduction and bacteria inactivation. Ag-based photocatalysts can be fabricated by chemically combing Ag iron and various anions (i.e., anion groups), including halides, sulphides, oxides and oxysalts. The photocatalytic activity and stability of Ag-based photocatalysts greatly depend on those anions (anion groups), which are formed by halogen, chalcogen, nitrogen, carbon and boron group and transition metal element. This review systematically summarized the effect of anions (anion groups) on the photocatalytic activity and stability of Ag-based photocatalysts. The perspectives for the further investigation were proposed. This review can provide the information for constructing more efficient Ag-based semiconductor photocatalyst.

基金项目:
国家“973”计划(2013CB632402);国家自然科学基金(51320105001,51372190,51402025,21433007);湖南省教育厅资助科研项目(16B027)资助。
作者简介:
余家国(1963—),男,教授。
参考文献:

 [1] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature, 1972, 238(5358): 37–38.

[2] JIN X, KIM I Y, JO Y K, et al. A crucial role of bond covalency competition in determining the bandgap and photocatalytic performance of silver oxosalts [J]. J Phys Chem C, 2013, 117(50): 26509–26516.
[3] XU D, CHENG B, ZHANG J, et al. Photocatalytic activity of Ag2MO4 (M = Cr, Mo, W) photocatalysts [J]. J Mater Chem A, 2015, 3(40): 20153–20166.
[4] 邢阳阳, 李秋叶, 杨建军. Ag-基等离子体共振光催化剂的研究进展[J]. 功能材料, 2012, 43(16): 2126–2130.
XING Yangyang, LI Qiuye, YANG Jianjun. J Funct Mater (in Chinese), 2012, 43(16): 2126–2130.
[5] SARINA S, WACLAWIK E R, Zhu H. Photocatalysis on supported gold and silver nanoparticles under ultraviolet and visible light irradiation[J]. Green Chem, 2013, 15(7): 1814–1833.
[6] 王欢, 崔文权, 韩炳旭, 等. Ag/AgX (X = Cl, Br, I)等离子共振光催化剂的研究进展[J]. 化工进展, 2013, 32(2): 346–351.
WANG Huan, CUI Wenquan, HAN Bingxu, et al. Chem Ind Eng Prog (in Chinese), 2013, 32(2): 346–351.
[7] 朱明山, 陈鹏磊, 刘鸣华. 银/卤化银:一类新型等离子体光催化剂[J]. 化学进展, 2013, 25(Z1): 209–220.
ZHU Mingshan, CHEN Penglei, LIU Minghua. Prog Chem (in Chinese), 2013, 25(Z1): 209–220.
[8] LONG M, CAI W. Advanced nanoarchitectures of silver/silver compound composites for photochemical reactions [J]. Nanoscale, 2014, 6(14): 7730–7742.
[9] WEN C, YIN A, DAI W L. Recent advances in silver-based heterogeneous catalysts for green chemistry processes [J]. Appl Catal B, 2014, 160: 730–741.
[10] MARTIN D J, LIU G, MONIZ S J A, et al. Efficient visible driven photocatalyst, silver phosphate: performance, understanding and perspective [J]. Chem Soc Rev, 2015, 44(21): 7808–7828.
[11] 周丽, 邓慧萍, 张为. 可见光响应的银系光催化材料[J]. 化学进展, 2015, 27(4): 349–360.
ZHOU Li, DENG Huiping, ZHANG Wei. Prog Chem (in Chinese), 2015, 27(4): 349–360.
[12] LI G, WANG Y, MAO L. Recent progress in highly efficient Ag-based visible-light photocatalysts [J]. RSC Adv, 2014, 4(96): 53649–53661.
[13] Wang P, Huang B, Dai Y, et al. Plasmonic photocatalysts: harvesting visible light with noble metal nanoparticles [J]. Phys Chem Chem Phys, 2012, 14(28): 9813–9825.
[14] LI J, FANG W, YU C, et al. Ag-based semiconductor photocatalysts in environmental purification [J]. Appl Sur Sci, 2015, 358: 46–56.
[15] 严学华, 高庆侠, 杨小飞, 等. 磷酸银基光催化材料研究进展[J]. 硅酸盐学报, 2013, 41(10): 1354–1365.
YAN Xuehua, GAO Qingxia, YANG Xiaofei, et al. J Chin Ceram Soc (in Chinese), 2013, 41(10): 1354–1365.
[16] BI Y, OUYANG S, CAO J, et al. Facile synthesis of rhombic dodecahedral AgX/Ag3PO4 (X = Cl, Br, I) heterocrystals with enhanced photocatalytic properties and stabilities [J]. Phys Chem Chem Phys, 2011, 13(21): 10071–10075.
[17] WANG P, HUANG B, QIN X, et al. Ag@AgCl: a highly efficient and stable photocatalyst active under visible light [J]. Angew Chem Int Edit, 2008, 47(41): 7931–7933.
[18] MA X, DAI Y, GUO M, et al. The role of effective mass of carrier in the photocatalytic behavior of silver halide-based Ag@AgX (X = Cl, Br, I): a theoretical study [J]. ChemPhysChem, 2012, 13(9): 2304–2309.
[19] WANG P, HUANG B, ZHANG Q, et al. Highly efficient visible light plasmonic photocatalyst Ag@Ag (Br, I) [J]. Chem-Eur J, 2010, 16(33): 10042–10047.
[20] WANG P, HUANG B, ZHANG X, et al. Highly efficient visible-light plasmonic photocatalyst Ag@AgBr [J]. Chem-Eur J, 2009, 15(8): 1821–1824.
[21] WANG G, MA X, HUANG B, et al. Controlled synthesis of Ag2O microcrystals with facet-dependent photocatalytic activities [J]. J Mater Chem, 2012, 22(39): 21189–21194.
[22] UMEZAWA N, OUYANG S, YE J. Theoretical study of high photocatalytic performance of Ag3PO4 [J]. Phys Rev B, 2011, 83(3): 287–292.
[23] HUANG H, HE Y, GUO Y, et al. Hydrothermal synthesis, nonlinear optical property and photocatalytic activity of a non-centrosymmetric AgIO3 photocatalyst under UV and visible light irradiation [J]. Solid State Sci, 2015, 46: 37–42.
[24] DONG H, CHEN G, SUN J, et al. A novel high-efficiency visible-light sensitive Ag2CO3 photocatalyst with universal photodegradation performances: simple synthesis, reaction mechanism and first-principles study [J]. Appl Catal B, 2013, s134–135(5): 46–54.
[25] KIM T G, YEON D H, KIM T, et al. Silver silicates with three-dimensional d10–d10 interactions as visible light active photocatalysts for water oxidation [J]. Appl Phys Lett, 2013, 103(4): 043904.
[26] OUYANG S, KIKUGAWA N, ZOU Z, et al. Effective decolorizations and mineralizations of organic dyes over a silver germanium oxide photocatalyst under indoor-illumination irradiation [J]. Appl Catal A, 2009, 366(2): 309–314.
[27] OBUKURO Y, NINOMIYA K, MATSUSHIMA S, et al. Electronic structure of photoresponsive Ag6M2O7 (M = Si, Ge) [J]. J Ceram Soc Jpn, 2016, 124(1): 116–121.
[28] OUYANG S, ZHANG H, LI D, et al. Electronic structure and photocatalytic characterization of a novel photocatalyst AgAlO2 [J]. J Phys Chem B, 2006, 110(24): 11677–11682.
[29] MARUYAMA Y, IRIE H, HASHIMOTO K. Visible Light sensitive photocatalyst, delafossite structured α-AgGaO2 [J]. J Phys Chem B, 2006, 110(46): 23274–23278.
[30] ZHAO W, LIANG F, JIN Z-M, et al. Efficient plasmonic photocatalytic activity on silver-nanoparticle-decorated AgVO3 nanoribbons [J]. J Mater Chem A, 2014, 2(33): 13226–13231.
[31] WANG X, YANG J, MA S, et al. In situ fabrication of AgI/AgVO3 nanoribbon composites with enhanced visible photocatalytic activity for redox reactions [J]. Catal Sci Technol, 2016, 6(1): 243–253.
[32] WU W, LIANG S, CHEN Y, et al. Mechanism and improvement of the visible light photocatalysis of organic pollutants over microcrystalline AgNbO3 prepared by a sol–gel method [J]. Mater Res Bull, 2013, 48(4): 1618–1626.
[33] NI L, TANABE M, IRIE H. A visible-light-induced overall water-splitting photocatalyst: conduction-band-controlled silver tantalate [J]. Chem Commun, 2013, 49(86): 10094–10096.
[34] XU C, LIU Y, HUANG B, et al. Preparation, characterization, and photocatalytic properties of silver carbonate [J]. Appl Sur Sci, 2011, 257(20): 8732–8736.
[35] YU J, DAI G, HUANG B. Fabrication and characterization of visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO2 nanotube arrays [J]. J Phys Chem C, 2009, 113(37): 16394–16401.
[36] 左士祥, 陈瑶, 吴孟德, 等. Ag@AgBr/C3N4–凹凸棒石复合材料的制备及光催化脱硫性能[J]. 硅酸盐学报, 2017, 45(7): 1–8.
ZUO Shixiang, CHEN Yao, WU Mengde, et al. J Chin Ceram Soc (in Chinese), 2017, 45(7): 1–8.
[37] 陈石林, 杨亦宸, 戴高鹏, 等. 微波-水热两步法合成花状Ag@AgBr/Bi2WO6及其可见光催化性能[J]. 硅酸盐学报, 2016, 44(7): 1059–1063.
CHEN Shilin, YANG Yichen, DAI Gaopeng, et al. J Chin Ceram Soc (in Chinese), 2016, 44(7): 1059–1063.
[38] WANG P, HUANG B, QIN X, et al. Ag/AgBr/WO3 center dot H2O: visible-light photocatalyst for bacteria destruction [J]. Inorg Chem, 2009, 48(22): 10697–10702.
[39] 李爱昌, 赵娣, 张苹苹, 等. Ag@AgBr/Ni薄膜光催化降解罗丹明B及其机理[J]. 硅酸盐学报, 2017, 45(1): 46–53.
LI Aichang, ZHAO Di, ZHANG Pingping, et al. J Chin Ceram Soc (in Chinese), 2017, 45(1): 46–53.
[40] AN C, PENG S, SUN Y. Facile synthesis of sunlight-driven AgCl: Ag plasmonic nanophotocatalyst [J]. Adv Mater, 2010, 22(23): 2570–2574.
[41] ZHU M, CHEN P, LIU M. Graphene oxide enwrapped Ag/AgX (X = Br, Cl) nanocomposite as a highly efficient visible-light plasmonic photocatalyst [J]. ACS Nano, 2011, 5(6): 4529–4536.
[42] WANG X, LI S, YU H, et al. Ag2O as a new visible-light photocatalyst: self-stability and high photocatalytic activity [J]. Chem-Eur J, 2011, 17(28): 7777–7780.
[43] ZHANG X, PAN X, ZHANG Q, et al. Synthesis of silver oxide nano-scale thin films and photo-activated dynamic luminescence from their nanoparticles [J]. Acta Phys-Chim Sin, 2003, 19(3): 203–207.
[44] SARKAR D, GHOSH C K, MUKHERJEE S, et al. Three dimensional Ag2O/TiO2 type-II (p–n) nanoheterojunctions for superior photocatalytic activity [J]. Acs Appl Mater Inter, 2013, 5(2): 331–337.
[45] YANG W, ZHANG L, HU Y, et al. Microwave-assisted synthesis of porous Ag2S–Ag hybrid nanotubes with high visible-light photocatalytic activity [J]. Angew Chem Int Edit, 2012, 51(46): 11501–11504.
[46] JIANG F, TIAN Q, TANG M, et al. One-pot synthesis of large-scaled Janus Ag-Ag2S nanoparticles and their photocatalytic properties [J]. Crystengcomm, 2011, 13(24): 7189–7193.
[47] MENG Z, ZHU L, ULLAH K, et al. Enhanced visible light photocatalytic activity of Ag2S-graphene/TiO2 nanocomposites made by sonochemical synthesis [J]. Chinese J Catal, 2013, 34(8): 1527–1533.
[48] CAO Q, CHENG Y, BI H, et al. Crystal defect-mediated band-gap engineering: a new strategy for tuning the optical properties of Ag2Se quantum dots toward enhanced hydrogen evolution performance [J]. J Mater Chem A, 2015, 3(40): 20051–20055.
[49] CAO H, XIAO Y, LU Y, et al. Ag2Se complex nanostructures with photocatalytic activity and superhydrophobicity [J]. Nano Res, 2010, 3(12): 863–873.
[50] GHOLAMREZAEI S, SALAVATINIASARI M, GHANBARI D, et al. Hydrothermal preparation of silver telluride nanostructures and photo-catalytic investigation in degradation of toxic dyes [J]. Sci Rep, 2015, 6(79): 20060.
[51] LIN Z H, SHIH Z Y, ROY P, et al. Preparation of photocatalytic Au-Ag2Te nanomaterials [J]. Chem–Eur J, 2012, 18(39): 12330–12336.
[52] YAREMA M, PICHLER S, SYTNYK M, et al. Infrared emitting and photoconducting colloidal silver chalcogenide nanocrystal quantum dots from a silylamide-promoted synthesis [J]. ACS Nano, 2011, 5(5): 3758–3765.
[53] YI Z, YE J, KIKUGAWA N, et al. An orthophosphate semiconductor with photooxidation properties under visible-light irradiation [J]. Nature Mater, 2010, 9(7): 559–564.
[54] MA X, LU B, LI D, et al. Origin of photocatalytic activation of silver orthophosphate from first-principles [J]. J Phys Chem C, 2015, 115(11): 4680–4687.
[55] REUNCHAN P, UMEZAWA N. Native defects and hydrogen impurities in Ag3PO4 [J]. Phys Rev B, 2013, 87(24): 3249–3253.
[56] REUNCHAN P, BOONCHUN A, UMEZAWA N. Electronic properties of highly-active Ag3AsO4 photocatalyst and its band gap modulation: an insight from hybrid-density functional calculations [J]. Phys Chem Chem Phys, 2016, 18(33): 23407–23411.
[57] YU J, LOW J, XIAO W, et al. Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed {001} and {101} facets [J]. J Am Chem Soc, 2014, 136(25): 8839–8842.
[58] BI Y, OUYANG S, UMEZAWA N, et al. Facet effect of single-crystalline Ag3PO4 sub-microcrystals on photocatalytic properties [J]. J Am Chem Soc, 2011, 133(17): 6490–6492.
[59] ZHENG B, WANG X, LIU C, et al. High-efficiently visible light-responsive photocatalysts: Ag3PO4 tetrahedral microcrystals with exposed {111} facets of high surface energy [J]. J Mater Chem A, 2013, 1(40): 12635–12640.
[60] WANG W, CHENG B, YU J, et al. Visible-light photocatalytic activity and deactivation mechanism of Ag3PO4 spherical particles [J]. Chem-Asian J, 2012, 7(8): 1902–1908.
[61] WANG H, BAI Y, YANG J, et al. A facile way to rejuvenate Ag3PO4 as a recyclable highly efficient photocatalyst [J]. Chem-Eur J, 2012, 18(18): 5524–5529.
[62] TANG J, LIU Y, LI H, et al. A novel Ag3AsO4 visible-light-responsive photocatalyst: facile synthesis and exceptional photocatalytic performance [J]. Chem Commun, 2013, 49(48): 5498–5500.
[63] GONG Y, YU H, QUAN X. Origin of visible light photocatalytic activity of Ag3AsO4 from first-principles calculation [J]. Int J Photoenergy, 2014, 2014(1): 1829–1836.
[64] KAKO T, KIKUGAWA N, YE J. Photocatalytic activities of AgSbO3 under visible light irradiation [J]. Catal Today, 2008, 131(1): 197–202.
[65] SINGH J, UMA S. Efficient photocatalytic degradation of organic compounds by ilmenite AgSbO3 under visible and UV light irradiation [J]. J Phys Chem C, 2009, 113(28): 12483–12488.
[66] LIU W, LIU X, FU Y, et al. Nanocrystalline pyrochlore AgSbO3: hydrothermal synthesis, photocatalytic activity and self-stable mechanism study [J]. Appl Catal B, 2012, s123–124(14): 78–83.
[67] SHI J, YE J, LI Q, et al. Single-crystal nanosheet-based hierarchical AgSbO3 with exposed {001} facets: topotactic synthesis and enhanced photocatalytic activity [J]. Chem-Eur J, 2012, 18(11): 3157–3162.
[68] LI G, WANG W, YANG N, et al. Composition dependence of AgSbO3/NaNbO3 composite on surface photovoltaic and visible-light photocatalytic properties [J]. Appl Phys A, 2011, 103(1): 251–256.
[69] KAKO T, YE J. Synergistic effect of different phase on the photocatalytic activity of visible light sensitive silver antimonates [J]. J Mol Catal B, 2010, 320(1): 79–84.
[70] YU X, ZHOU J, WANG Z, et al. Preparation of visible light-responsive AgBiO3 bactericide and its control effect on the microcystis aeruginosa [J]. J Photoch Photobio B, 2010, 101(3): 265–270.
[71] TAKEI T, HARAMOTO R, DONG Q, et al. Photocatalytic activities of various pentavalent bismuthates under visible light irradiation [J]. J Solid State Chem, 2011, 184(8): 2017–2022.
[72] ZHOU W, ZHAO Z. Electronic structures of efficient MBiO3 (M = Li, Na, K, Ag) photocatalyst [J]. Chinese Phys B, 2016, 25(3): 037102.
[73] DAI G, YU J, LIU G. A new approach for photocorrosion inhibition of Ag2CO3 photocatalyst with highly visible-light-responsive reactivity [J]. J Phys Chem C, 2012, 116(29): 15519–15524.
[74] DAI G, LI S, LIU S, et al. Improved photocatalytic activity and stability of nano-sized Ag/Ag2CO3 plasmonic photocatalyst by surface modification of Fe(III) nanocluster [J]. J Chin Chem Soc-Taip, 2015, 62(11): 944–950.
[75] SONG S, BEI C, WU N, et al. Structure effect of graphene on the photocatalytic performance of plasmonic Ag/Ag2CO3-rGO for photocatalytic elimination of pollutants [J]. Appl Catal B, 2016, 181: 71–78.
[76] YU C, WEI L, CHEN J, et al. Enhancing the photocatalytic performance of commercial TiO2 crystals by coupling with trace narrow-band-gap Ag2CO3 [J]. Ind Eng Chem Res, 2014, 53(14): 5759–5766.
[77] SHI L, LIANG L, WANG F, et al. Enhanced visible-light photocatalytic activity and stability over g-C3N4/Ag2CO3 composites [J]. J Mater Sci, 2015, 50(4): 1718–1727.
[78] PANTHI G, PARK S J, KIM T W, et al. Electrospun composite nanofibers of polyacrylonitrile and Ag2CO3 nanoparticles for visible light photocatalysis and antibacterial applications [J]. J Mater Sci, 2015, 50(13): 4477–4485.
[79] LOU Z, HUANG B, WANG Z, et al. Ag6Si2O7: a silicate photocatalyst for the visible region [J]. Chem Mater, 2014, 26(13): 3873–3875.
[80] LOU Z, WANG Z, HUANG B, et al. One-step synthesis of amorphous silver silicates with tunable light absorption apectra and photocatalytic activities in the visible region [J]. Chem-Eur J, 2015, 21(24): 8706–8710.
[81] LIN Z J, SUN X D, LIU S H, et al. Facile synthesis of silver-tin oxide electrical contact materials by in-situ decomposition of a uniform mixture precursor [J]. IOP Conf. Series: Mater Sci Eng, 2015, 103(1): 012008.
[82] OUYANG S, LI Z, OUYANG Z, et al. Correlation of crystal structures, electronic structures, and photocatalytic properties in a series of Ag-based oxides: AgAlO2, AgCrO2, and Ag2CrO4 [J]. J Phys Chem C, 2008, 112(8): 3134–3141.
[83] OUYANG S, KIKUGAWA N, CHEN D, et al. A systematical study on photocatalytic properties of AgMO2 (M = Al, Ga, In): effects of chemical compositions, crystal structures, and electronic structures [J]. J Phys Chem C, 2009, 113(4): 1560–1566.
[84] DONG H, LI Z, XU X, et al. Visible light-induced photocatalytic activity of delafossite AgMO2 (M = Al, Ga, In) prepared via a hydrothermal method [J]. Appl Catal B, 2009, 89(3): 551–556.
[85] ZHANG X, LUO Z, WANG Y, et al. Synthesis of a novel visible-light-driven photocatalyst Ag/AgAlO2 composite [J]. Chem Lett, 2016, 45(11): 1288–1290.
[86] OUYANG S, CHEN D, WANG D, et al. From β-phase particle to α-phase hexagonal-platelet superstructure over AgGaO2: phase transformation, formation mechanism of morphology, and photocatalytic properties [J]. Cryst Growth Des, 2010, 10(7): 2921–2927.
[87] OUYANG S, YE J. β-AgAl1–xGaxO2 solid-solution photocatalysts: continuous modulation of electronic structure toward high-performance visible-light photoactivity [J]. J Am Chem Soc, 2011, 133(20): 7757–7763.
[88] THAKARE S R, GAIKWAD G S, KHATI N T, et al. Development of new, highly efficient and stable visible light active photocatalyst Ag2ZrO3 for methylene blue degradation [J]. Catal Commun, 2015, 62: 39–43.
[89] JU P, FAN H, ZHANG B, et al. Enhanced photocatalytic activity of β-AgVO3 nanowires loaded with Ag nanoparticles under visible light irradiation [J]. Sep Purif Technol, 2013, 109: 107–110.
[90] SINGH A, DUTTA D P, BALLAL A, et al. Visible light driven photocatalysis and antibacterial activity of AgVO3 and Ag/AgVO3 nanowires [J]. Mater Res Bull, 2014, 51(2): 447–454.
[91] SIVAKUMAR V, SURESH R, GIRIBABU K, et al. AgVO3 nanorods: synthesis, characterization and visible light photocatalytic activity [J]. Solid State Sci, 2015, 39: 34–39.
[92] ZHAO W, GUO Y, FAIZ Y, et al. Facile in-suit synthesis of Ag/AgVO3 one-dimensional hybrid nanoribbons with enhanced performance of plasmonic visible-light photocatalysis [J]. Appl Catal B, 2015, 163: 288–297.
[93] ARNEY D, HARDY C, GREVE B, et al. Flux synthesis of AgNbO3: effect of particle surfaces and sizes on photocatalytic activity [J]. J Photoch Photobio A, 2010, 214(1): 54–60.
[94] LI G, YAN S, WANG Z, et al. Synthesis and visible light photocatalytic property of polyhedron-shaped AgNbO3 [J]. Dalton T, 2009, (40): 8519–8524.
[95] LI G, KAKO T, WANG D, et al. Enhanced photocatalytic activity of La-doped AgNbO3 under visible light irradiation [J]. Dalton T, 2009, (13): 2423–2427.
[96] YASHIMA M, MATSUYAMA S. Origin of the ferrielectricty and visible-light photocatalytic activity of silver niobate AgNbO3 [J]. J 
Phys Chem C, 2012, 116(47): 24902–24906.
[97] KATO H, KOBAYASHI H, KUDO A. Role of Ag+ in the band structures and photocatalytic properties of AgMO3 (M: Ta and Nb) with the perovskite structure [J]. J Phys Chem B, 2002, 106(48): 12441–12447.
[98] XU D, CAO S, ZHANG J, et al. Effects of the preparation method on the structure and the visible-light photocatalytic activity of Ag2CrO4 [J]. Beilstein J Nanotech, 2014, 5: 658–666.
[99] XU D, CHENG B, CAO S, et al. Enhanced photocatalytic activity and stability of Z-scheme Ag2CrO4-GO composite photocatalysts for organic pollutant degradation [J]. Appl Catal B, 2015, 164: 380–388.
[100] ZHANG J, YU W, LIU J, et al. Illustration of high-active Ag2CrO4 photocatalyst from the first-principle calculation of electronic structures and carrier effective mass [J]. Appl Sur Sci, 2015, 358: 457–462.
[101] LIN Z, LI J, ZHENG Z, et al. Electronic reconstruction of α-Ag2WO4 nanorods for visible-light photocatalysis [J]. ACS Nano, 2015, 9(7): 7256–7265.
[102] SHI L, GOU J, LIANG L, et al. The crystal phase transformation of Ag2WO4 through loading onto g-C3N4 sheets with enhanced visible-light photocatalytic activity [J]. RSC Adv, 2016, 6(99): 96861–96869.
[103] ZHU B, XIA P, LI Y, et al. Fabrication and photocatalytic activity enhanced mechanism of direct Z-scheme g-C3N4/Ag2WO4 photocatalyst [J]. Appl Surf Sci, 2017, 391: 175–183.
[104] WANG X, FU C, WANG P, et al. Hierarchically porous metastable β-Ag2WO4 hollow nanospheres: controlled synthesis and high photocatalytic activity [J]. Nanotechnology, 2013, 24(16): 165602.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com