首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
掺杂稀土铈对高炉渣陶瓷远红外性能及物理性能的影响
作者:张珂玮1  怡2 杨元意4  兵1 廖咏康3 杨为中1 
单位:1. 四川大学材料科学与工程学院 成都 640064 2. 四川大学化学工程学院 成都 610065 3. 四川白塔新联兴陶瓷集团有限责任公司 四川 威远 642450 4. 四川建筑职业学院材料工程系 四川 德阳 618000 
关键词:高炉渣 稀土 红外辐射 物理性能 
分类号:TU523
出版年,卷(期):页码:2017,45(9):0-0
DOI:
摘要:

 以攀西地区高炉废渣为原料,采用陶瓷烧结工艺制备了不同稀土Ce掺杂量的高炉渣远红外陶瓷。研究了高炉渣陶瓷中稀土Ce的最佳掺入量以及稀土的掺入对陶瓷红外辐射性能的影响机理,考察了稀土的掺入对于高炉渣陶瓷线收缩率、吸水率及抗折强度的影响。采用X射线衍射与扫描电子显微镜研究了样品的晶相组成与显微结构,采用Fourier红外吸收光谱及发射光谱研究了样品红外吸收及发射性能。结果表明:陶瓷红外发射率最高达0.91,样品的抗折强度最高达38.1 MPa。高炉渣远红外陶瓷不仅具备高的远红外辐射能力,而且拥有良好的物理性能。

 
基金项目:
四川省科技支持计划(2015GZ0175)。
作者简介:
张珂玮(1993—),男,硕士研究生。
参考文献:

 [1]LIU Jie, MENG Junping, LIANG Jinsheng, et al. Effect of far infrared radiation ceramics containing rare earth additives on surface tension of water[J]. J Rare Earth, 2014, 32(9): 890–894.

[2]ALDARTSOGT D, YAMASHITA K Y, SHINE O D. The Ceramics radiating far infrared ray energy (rhyolite) promote the formation of bone[J]. J Hard Tissue Biol, 2014, 23(4): 423–434.
[3]王峰, 钱学强, 李小伟, 等. 高红外辐射陶瓷材料的研究进展[J]. 硅酸盐通报, 2015, 34(1): 143–155.
WANG Feng, QIAN Xueqiang, LI Xiaowei, et al. Bull Chin Ceram Soc (in Chinese), 2015, 34(1): 143–155.
[4]张贤明, 曾亚, 陈凌, 等. 高炉钛渣综合利用研究现状及展望[J]. 环境工程, 2015, 33(12): 100–104.
ZHANG Xianming, ZENG Ya, CHEN Ling, et al. Environ Eng (in Chinese), 2015, 33(12): 100–104.
[5]LI Hongyi, WANG Kang, HUA Weihao, et al. Selective leaching of vanadium in calcification-roasted vanadium slag by ammonium carbonate[J]. Hydrometallurgy, 2015, 160: 18–25.
[6]WANG Shuming, KUANG Fenghua, YAN Qingzhi, et al. Crystallization and infrared radiation properties of iron ion doped cordierite glass-ceramics[J]. J Alloy Compd, 2011, 509(509): 2819–2823. 
[7]CHANG Meiqi, SHENG Ye, SONG Yanhua, et al. Luminescence properties and Judd–Ofelt analysis of TiO2:Eu3+ nanofibers via polymer-based electrospinning method[J]. RSC Adv, 2016, 6(57): 52113–52121. 
[8]ZHANG Ying, WEN Dijiang. Infrared emission properties of RE (RE=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, and Dy) and Mn co–doped Co0.6Zn0.4 Fe2O4, ferrites[J]. Mater Chem Phys, 2012, 131(3): 575–580.
[9]张英, 闻荻江. 稀土离子掺杂Co2O3–ZnO–NiO–Fe2O3陶瓷在特定波段的红外辐射性能[J]. 硅酸盐学报, 2008, 36(6): 743–747.
ZHANG Ying, WEN Dijiang. J Chin Ceram Soc, 2008, 36(6): 743–747.
[10]LIU Jie, MENG Junping, LIANG Jinsheng, et al. Effect of rare earth Ce on the far infrared radiation property of iron ore tailings ceramics[J]. Mater Res Bull, 2015, 66: 26–31.
[11]ZHANG Kewei, DENG Yi, YANG Yuanyi, et al. Effect of lanthanum doping on the far-infrared emission property of vanadium-titanium slags ceramic[J]. RSC Adv, 2017, 7(22): 13509–13516.
[12]赵立华, 苍大强, 刘璞, 等. CaO–MgO–SiO2体系钢渣陶瓷材料制备与微观结构分析[J]. 工程科学学报, 2011, 33(8): 995–1000.
ZHAO Lihua, CHANG Daqiang, LIU Pu, et al. J ENG SCI (in Chinese), 2011, 33(8): 995–1000.
[13]王峰, 布丛郝, 叶建克, 等. (Ca,Fe)共掺铈酸镧陶瓷的制备及红外辐射性能研究[J]. 无机材料学报, 2016, 31(2): 185–189.
WANG Feng, BU Conghao, YE Jianke, et al. J Inorg Mater (in Chinese), 2016, 31(2): 185–189.
[14]VIJAY S, VINEET K R, VENKATRAMU V, et al. Infrared emissions in MgSrAl10O17:Er3+ phosphor co-doped with Yb3+/Ba2+/Ca2+ obtained by solution combustion route[J]. J Lumin, 2013, 134(134): 396–400.
[15]OZTURK Z B, GULTEKIN E E. Preparation of ceramic wall tiling derived from blast furnace slag[J]. Ceram Int, 2015, 41(9): 12020–12026.
[16]DAS S K, KUMAR S, RAMACHANDRARAO P. Exploitation of iron ore tailing for the development of ceramic tiles[J]. Waste Manage, 2000, 20(8): 725–729. 
[17]胡丽华, 高建民, 马天, 等. 碳化硅木质陶瓷的显微结构及力学性能[J]. 硅酸盐学报, 2013, 41(6): 725–731.
HU Lihua, GAO Jianmin, MA Tian, et al. J Chin Ceram Soc, 2013, 41(6): 725–731.
[18]赵介南, 张宁, 周彬彬, 等. Al2O3基陶瓷材料的增韧研究进展[J]. 硅酸盐通报, 2016, 35(9): 2866–2871.
ZHAO Jienan, ZHANG Ning, ZHOU Binbin, et al. Bull Chin Ceram Soc (in Chinese), 2016, 35(9): 2866–2871.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com