首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
二维材料:结构、制备与性能
作者:朱宏伟 王敏 
单位:新型陶瓷与精细工艺国家重点实验室 清华大学材料学院 北京 100084 
关键词:二维材料 结构 制备 性能 
分类号:TB383.1
出版年,卷(期):页码:2017,45(8):1043-1053
DOI:10.14062/j.issn.0454-5648.2017.08.01
摘要:

?以石墨烯为代表的二维材料具有独特的二维层状结构,表现出优异的物理、化学、电子和光学性能,在众多领域具有应用潜力。自石墨烯被发现以来二维材料就受到了广泛关注。二维材料按组成分为单质、非金属化合物、金属化合物、盐类和有机物5大类,本文结合二维材料的最新研究进展,概述了各种二维材料的结构特征,归纳了二维材料的制备方法,评述了二维材料在电子/光电子器件、催化、能量储存和转换、传感器和环境治理等领域的潜在应用。

 

 Two-dimensional (2D) materials represented by graphene have unique 2D layered structure, exhibiting excellent physical, chemical, electronic and optical properties for a wide spectra of applications. Since the discovery of graphene, 2D materials have attracted extensive attentions in various fields. Based on the composition of 2D materials, they were divided into five categories: element, nonmetallic compound, metallic compound, salt and organic. The structural characteristics of 2D materials were described, the preparation methods, as well as their properties and potential applications in electronics/optoelectronics, catalysis, energy storageand conversion, sensors and environmental remediation were summarized. 

 
基金项目:
北京市自然科学基金面上项目(20172027)。
作者简介:
朱宏伟(1974—),男,博士,教授
参考文献:
[1]YANG T, LI Z, ZHU H, et al. Recent advances in wearable tactile sensors: Materials, sensing mechanisms, and device performance[C]. Mater Sci Eng: R: Reports, 2017, 115: 1–37.
[2]NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666–669.
[3]TAN C, CAO X, ZHANG H, et al. Recent advances in ultrathin two-dimensional nanomaterials[J]. Chem Rev, 2017, 117(9): 6225–6331. 
[4]MATTHEW J A, VINCENT C T, RICHARD B K. Honeycomb Carbon: A Review of Graphene[J]. Chem Rev, 2010, 110(1): 132–145.
[5]BROWN A, RUNDQVIST S. Refinement of Crystal Structure of Black Phosphorous[J]. Acta Crystallograph, 1965, 19: 684–685.
[6]TAO L, CINQUANTA E, AKINWANDE D, et al. Silicene field-effect transistors operating at room temperature[J]. Nat Nanotechnol, 2015, 10(3): 227–231.
[7]DAVILA M E, XIAN L, LE L G, et al. Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene[J]. New J Phys, 2014, 16:.
[8]SAXENA S, CHAUDHARY R P, SHUKLA S, et al. Stanene: atomically thick free-standing layer of 2D hexagonal tin[J]. Scientific Reports, 2016, 6.
[9]ZHANG S, YAN Z, ZENG H, et al. Atomically thin arsenene and antimonene: semimetal-semiconductor and indirect-direct band-gap transitions[J]. Angew Chem Int Ed Eng, 2015, 54(10): 3112–3115.
[10]PENEV E S, KUTANA A, YAKOBSON B I, et al. Can two-dimensional boron superconduct?[J]. Nano Lett, 2016, 16(4), 2522–2526.
[11]ANDREW J M, MARK C H, NATHAN P G, et al. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs[J]. Science, 2015, 350(6267): 1513–1516.
[12]KONG X, LIU Q, CHEN Q, et al. Elemental two-dimensional nanosheets beyond graphene[J]. Chem Soc Rev, 2017, 46(8): 2127–2157.
[13]KAPOOR P, KUMAR J, AHLUWALIA P K, et al. Electronic, mechanical and dielectric properties of two-dimensional atomic layers of noble metals[J]. J Electron Mater, 2017, 46(1): 650–659.
[14]JIONG Z, QING M D, MARK H R, et al. Free-standing single-atom-thick iron membranes suspended in graphene pores[J]. Science, 2014, 343(6176): 1228–1232.
[15]GAO S, LIN Y, XIE Y, et al. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel[J]. Nature, 2016, 529(7584): 68–71.
[16]KUANG Y, LI Y, SUN X, et al. Single-crystalline ultrathin nickel nanosheets array from in situ topotactic reduction for active and stable electrocatalysis[J]. Angew Chem Int Ed, 2016, 55(2): 693–697.
[17]KONG X, XU K, PENG Z, et al. Free-standing two-dimensional runanosheets with high activity toward water splitting[J]. ACS Catal, 2016, 6(3): 1487–1492.
[18]DUAN H, YAN N, LI Y, et al. Ultrathin rhodium nanosheets[J]. Nat Commun, 2014, 5, 3093.
[19]LIN L, FENG Y P, SHEN Z X, et al. Structural and electronic properties of h-BN[J]. Phys Rev B, 2003, 68(10).
[20]THOMAS A, FISCHER A, CARLSSON J M, et al. Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts[J]. J Mater Chem, 2008, 18(41): 4893–4908.
[21]LI J, LEI N, ZHOU J, et al. A series of BCN nanosheets with enhanced photoelectrochemical performances[J]. Chem Phys Lett, 2017, 672: 99–104.
[22]DREYER DR, PARK S, RUOFF R S, et al. The chemistry of graphene oxide[J]. Chem Soc Rev, 2010, 39(1): 228–240.
[23]FRANTISEK K, MICHAL O, RADEK Z, et al. Halogenated graphenes: rapidly growing family of graphene derivatives[J]. ACS Nano, 2013, 7(8): 6434–6464.
[24]WANG Q, O'HARE D. Recent Advances in the synthesis and application of layered double hydroxide (LDH) nanosheets[J]. Chem Rev, 2012, 112(7): 4124–4155.
[25]BALENDHRAN S, WALIA S, NILI H, et al. Two-dimensional molybdenum trioxide and dichalcogenides[J]. Adv Funct Mater, 2013, 23(32): 3952–3970.
[26]WANG H, EYERT V, SCHWINGENSCHLOGL U. Electronic structure and magnetic ordering of the semiconducting chromium trihalides CrCl3, CrBr3 and CrI3[J]. J Phys Condens Matter, 2011, 23(11): 116003.
[27]LIN J, LI XB, LIU L M, et al. Diverse and tunable electronic structures of single-layer metal phosphorus trichalcogenides for photocatalytic water splitting[J]. J Chem Phys, 2014, 140(5): 054707.
[28]KUHN A, CHEVALIER R. Crystal structure and interatomic distances in GaSe[J]. Phys Stat Sol, 1975, 31(2): 469–475.
[29]VOIRY D, MOHITE A, CHHOWALLA M, et al. Phase engineering of transition metal dichalcogenides[J]. Chem Soc Rev, 2015, 44(9): 2702–2712.
[30]NAGUIB M, BARSOUM M W, GOGOTSI Y, et al. 25th anniversary article: mxenes: a new family of two-dimensional materials[J]. Adv Mater, 2014, 26(7): 992–1005.
[31]LIND M. Refinement of the crystal structure of iron oxychloride[J]. Acta Crystallograph Sect B, 1970, 26(8): 1058–1062.
[32]TAN HT, SUN W P, YAN Q Y, et al. 2D transition metal oxides/hydroxides for energy-storage applications[J]. Chemnanomat, 2016, 2(7): 562–577.
[33]CHENG Z, LIN J. Layered organic–inorganic hybrid perovskites: structure, optical properties, film preparation, patterning and templating engineering[J]. Cryst Eng Commum, 2010, 12(10): 2646–2662.
[34]HENDRICKS S B. Crystal structures of the clay mineral hydrates[J]. Nature, 1938, 142: 38–38.
[35]ZHAO S, WANG Y, TANG Z, et al. Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution[J]. Nat Energy, 2016, 1, 16184.
[36]DING SY, WANG W. Covalent organic frameworks (COFs): from design to applications[J]. Chem Soc Rev, 2013, 42(2): 548–568.
[37]SPITLER E L, KOO B T, DICHTEL W R, et al. A 2D covalent organic framework with 4.7 nm pores and insight into its interlayer stacking[J]. J Am Chem Soc, 2011, 133(48): 19416–19421.
[38]CAI S L, ZHAO X, LIU Y, et al. The organic flatland-recent advances in synthetic 2D organic layers[J]. Adv Mater, 2015, 27(38): 5762–5770.
[39]NOVOSELOV K S, JIANG D, GEIMA K, et al. Two-dimensional atomic crystals[J]. PNAS, 2005, 102(30): 78–83.
[40]NICOLOSI V, HHOWALLA M, OLEMAN J N, et al. Liquid exfoliation of layered materials[J]. Science, 2013, 340(6139): 1420–+.
[41]HERNANDEZ Y, NICOLOSI V, COLEMAN J N, et al. High-yield production of graphene by liquid-phase exfoliation of graphite[J]. Nat Nanotechnol, 2008, 3(9): 563–568.
[42]COLEMAN J N, LOTYA M, NICOLOSI V, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials[J]. Science, 2011, 331(6017): 568–571.
[43]LIN Y, WILLIAMS T V, CONNELL J W. Soluble, exfoliated hexagonal boron nitride nanosheets[J]. J Phys Chem Lett, 2010, 1(1): 277–283.
[44]HANLON D, BACKES C, COLEMAN J N, et al. Production of molybdenum trioxide nanosheets by liquid exfoliation and their application in high-performance supercapacitors[J]. Chem Mater, 2014, 26(4): 1751–1763.
[45]KALANTAR Z K, ZHENG H, STRANO MS, et al. Synthesis of atomically thin WO3 sheets from hydrated tungsten trioxide[J]. Chem Mater, 2010, 22(19): 5660–5666.
[46]PATON K R, VARRLA E, COLEMAN J N, et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids[J]. Nat Mater, 2014, 13(6): 624–630.
[47]XU F, GE B, ZHU Y, et al. Scalable shear-exfoliation of high-quality phosphorenenanoflakes with reliable electrochemical cycleability in nano batteries[J]. 2D Mater, 2016, 3(2): 025005.
[48]VARRLA E, BACKES C, COLEMAN J N, et al. Large-scale production of size-controlled MoS2 nanosheets by shear exfoliation[J]. Chem Mater, 2015, 27(3): 1129–1139.
[49]ZHENG J, LIU B, LOH K P, et al. High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide[J]. Nat Commun, 2014, 5: 2995.
[50]ZENG Z, YIN Z, ZHANG H, et al. Single-layer semiconducting nanosheets: high-yield preparation and device fabrication[J]. Angew Chem Int Ed, 2011, 50(47): 11093–11097.
[51]ZENG Z, SUN T, ZHANG H, et al. An effective method for the fabrication of few-layer-thick inorganic nanosheets[J]. Angew Chem Int Ed, 2012, 51(36): 9052–9056.
[52]MA R, SASAKI T. Nanosheets of Oxides and Hydroxides: Ultimate 2D charge-bearing functional crystallites[J]. Adv Mater, 2010, 22(45): 5082–5104.
[53]FRINDT R F, YANG D, WESTREICH P. Exfoliated single molecular layers of Mn0.8PS3 and Cd0.8PS3[J]. J Mater Res, 2005, 20(5): 1107–1112.
[54]STANKOVICH S, DIKIN D A, RUOFF R S, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon, 2007, 45(7): 1558–1565.
[55]ZHU Y, POTTS J R, RUOFF R S, et al. Graphene and graphene oxide: synthesis, properties and applications[J]. Adv Mater, 2010, 22(35): 3906–3924.
[56]NAGUIB M, GOGOTSI Y, BARSOUM M W, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Adv Mater, 2011, 23(37): 4248–4253.
[57]NG V M H, HUANG H, KONG L B, et al. Recent progress in layered transition metal carbides and/or nitrides (MXenes) and their composites: synthesis and applications[J]. J Mater Chem A, 2017, 5(7): 3039–3068.
[58]YU J, LI J, CHANG H, et al. Synthesis of high quality two-dimensional materials via chemical vapor deposition[J]. Chem Sci, 2015, 6(12): 6705–6716.
[59]XU C, WANG L, REN W, et al. Large-area high-quality 2D ultrathin Mo2C superconducting crystals[J]. Nat Mater, 2015, 14(11): 1135–+.
[60]TAN C, ZHANG H. Wet-chemical synthesis and applications of non-layer structured two-dimensional nanomaterials[J]. Nat Commun, 2015, 6.
[61]SHI W, SONG S, ZHANG H. Hydrothermal synthetic strategies of inorganic semiconducting nanostructures[J]. Chem Soc Rev, 2013, 42(13): 5714–5743.
[62]SIMON P, KNIEP R, ROSSEEVA E, et al. Interconnection of nanoparticles within 2D superlattices of PbS/oleic acid thin films[J]. Adv Mater, 2014, 26(19): 3042–3049.
[63]CHEN X, ZHOU Y, ZOU Z, et al. Ultrathin, single-crystal wo3nanosheets by two-dimensional oriented attachment toward enhanced photocatalystic reduction of CO2 into hydrocarbon fuels under visible light[J]. Acs Appl Mater Interfaces, 2012, 4(7): 3372–3377.
[64]LIU Y, GOEBL J, YIN Y. Templated synthesis of nanostructured materials[J]. Chem Soc Rev, 2013, 42(7): 2610–2653.
[65]MAHLER B, LOAO K, OZIN G A, et al. Colloidal synthesis of 1T-WS2 and 2H-WS2 nanosheets: applications for photocatalytic hydrogen evolution[J]. J Am Chem Soc, 2014, 136(40): 14121–14127.
[66]BOOTT C E, NAZEMI A, MANNERS I. Synthetic covalent and non-covalent 2D materials[J]. Angew Chem Int Ed, 2015, 54(47): 13876–13894.
[67]FELDBLYUM J I, FANG L, BAO Z, et al. Few-layer, large-area, 2D covalent organic framework semiconductor thin films[J]. Chem Commun, 2015, 51(73): 13894–13897.
[68]XU L, MA J, LEI S, et al. Surface-confined crystalline two-dimensional covalent organic frameworks via on-surface schiff-base coupling[J]. Acs Nano, 2013, 7(9): 8066–8073.
[69]KISSEL P, MURRAY D J, KING B T, et al. A nanoporous two-dimensional polymer by single-crystal-to-single-crystal photopolymerization[J]. Nat Chem, 2014, 6(9): 774–778.
[70]FIORI G, BONACORSO F, COLOMBO L, et al. Electronics based on two-dimensional materials[J]. Nat Nanotechnol, 2014, 9(10): 768–779.
[71]LI L, YU Y, CHEN X H, et al. Black phosphorus field-effect transistors[J]. Nat Nanotechnol, 2014, 9(5): 372–377.
[72]AKINWANDE D, PETRONE N, HONE J. Two-dimensional flexible nanoelectronics[J]. Nat Commun, 2014, 5:.
[73]CHANG H Y, YANG S, JENA D, et al. High-performance, highly bendable MoS2 transistors with high-k dielectrics for flexiblelow-power systems[J]. Acs Nano, 2013, 7(6): 5446–5452.
[74]YOUNGBLOOD N, CHEN C, LI M, et al. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current[J]. Nat Photon, 2015, 9(4): 247–252.
[75]DENG Y, LUO Z, YE P D, et al. Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode[J]. Acs Nano, 2014, 8(8): 8292–8299.
[76]JARAMILLO T F, JORGENSEN K P, BONDE J, et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts[J]. Science, 2007, 317(5834): 100–102.
[77]GAO MR, CHAN M K Y, SUN Y. Edge-terminated molybdenum disulfide with a 9.4 angstrom interlayer spacing for electrochemical hydrogen production[J]. Nat Commun, 2015, 6. DOI: 10.1038/ncomms8493.
[78]WANG H, LIU N, CUI Y, et al. MoSe2 and WSe2 nanofilms with vertically aligned molecular layers on curved and rough surfaces[J]. Nano Lett, 2013, 13(7): 3426–3433.
[79]ZHENG Y, JIAO Y, QIAO S Z, et al. Hydrogen evolution by a metal-free electrocatalyst[J]. Nat Commun, 2014, 5(4): 3783.
[80]TROTOCHAUD L, RANNEY J K, BOETTCHER S W, et al. Solution-cast metal oxide thin film electrocatalysts for oxygen evolution[J]. J Am Chem Soc, 2012, 134(41): 17253–17261.
[81]ZOU X, GOSWAMI A, ASEFA T. Efficient noble metal-free (electro) catalysis of water and alcohol oxidations by zinc-cobalt layered double hydroxide[J]. J Am Chem Soc, 2013, 135(46): 17242–17245.
[82]Bao J, Pan B, Xie Y, et al. Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation[J]. Angew Chem Int Ed, 2015, 54(25): 7399–7404.
[83]LIU Y, XIAO C, XIE Y, et al. Ultrathin Co3S4 nanosheets that synergistically engineer spin states and exposed polyhedra that promote water oxidation under neutral conditions[J]. Angew Chem Int Ed, 2015, 54(38): 11231–11235.
[84]LIANG L, WEI S, XIE Y, et al. Metallic single-unit-cell orthorhombic cobalt diselenide atomic layers: robust water-electrolysis catalysts[J]. Angew Chem Int Ed, 2015, 54(41): 12004–12008.
[85]XU K, CHEN P, XIE Y, et al. Metallic nickel nitride nanosheets realizing enhanced electrochemical water oxidation[J]. J Am Chem Soc, 2015, 137(12): 4119–4125.
[86]LIN Z, WALLER G H, LIU Y, et al. Simple preparation of nanoporous few-layer nitrogen-doped graphene for use as an efficient electrocatalyst for oxygen reduction and oxygen evolution reactions[J]. Carbon, 2013, 53: 130–136.
[87]WANG X, SUN G, CHEN P, et al. Heteroatom-doped graphene materials: syntheses, properties and applications[J]. Chem Soc Rev, 2014, 43(20): 7067–7098.
[88]HUANG H, FENG X, SONG W, et al. Incorporated oxygen in MoS2 ultrathin nanosheets for efficient ORR catalysis[J]. J Mater Chem A, 2015, 3(31): 16050–16056.
[89]HUANG H, DU C, SONG W, et al. High-quality phosphorus-doped MoS2 ultrathin nanosheets with amenable ORR catalytic activity[J]. Chem Commun, 2015, 51(37): 7903–7906.
[90]WANG W, ZHAO Y, DING Y. 2D ultrathin core-shell Pd@Pt-monolayernanosheets: defect-mediated thin film growth and enhanced oxygen reduction performance[J]. Nanoscale, 2015, 7(28): 11934–11939.
[91]SCHNEIDER J, MATSUOKA M, BAHNEMANN D W, et al. Understanding TiO2 photocatalysis: mechanisms and materials[J]. Chem Rev, 2014, 114(19): 9919–9986.
[92]OSHIMA T, ISHITANI O, MAEDA K. Non-sacrificial water photo-oxidation activity of lamellar calcium niobate induced by exfoliation[J]. Adv Mater Interfaces, 2014, 1(7).
[93]GOMES SILVA C, BOUIZI Y, GARCIA H, et al. Layered double hydroxides as highly efficient photocatalysts for visible light oxygen generation from water[J]. J Am Chem Soc, 2009, 131(38): 13833–13839.
[94]NIU P, ZHANG L, LIU G, et al. Graphene-like carbon nitride nanosheets for improved photocatalytic activities[J]. Adv Funct Mater, 2012, 22(22): 4763–4770.
[95]YEH TF, SYU JM, TENG H, et al. Graphite oxide as a photocatalyst for hydrogen production from water[J]. Adv Funct Mater, 2010, 20(14): 2255–2262.
[96]ZONG X, YAN H, LI C, et al. Enhancement of photocatalytic H-2 evolution on CdS by loading MOS2 as cocatalyst under visible light irradiation[J]. J Am Chem Soc, 2008, 130(23). DOI: 10.1021/ja8007825.
[97]CAO A, LIU Z, LIU Y, et al. A facile one-step method to produce graphene-CdS quantum dot nanocomposites as promising optoelectronic materials[J]. Adv Mater, 2010, 22(1). DOI: 10.1002/adma.200901920.
[98]LEE H U, LEE S C, LEE J, et al. Stable semiconductor black phosphorus (BP)@titanium dioxide (TiO2) hybrid photocatalysts[J]. Scientific Reports, 2015, 5.
[99]LI X, ZHU H. Two-dimensional MoS2: Properties, preparation, and applications[J]. J Materiom, 2015, 1(1): 33–44.
[100]WANG C, DU G, JIANG J Z, et al. Ultrathin SnO2 nanosheets: oriented attachment mechanism, nonstoichiometric defects, and enhanced lithium-ion battery performances[J]. J Phys Chem C, 2012, 116(6): 4000–4011.
[101]KHAN A H, GHOSH S, ARIGA K, et al. Two-dimensional (2D) nanomaterials towards electrochemical nanoarchitectonics in energy-related applications[J]. Bull Chem Soc Jpn, 2017, 90(6): 627–648.
[102]ZANG X, WU D, ZHU H, et al. Evaluation of layer-by-layer graphene structures as supercapacitor electrode materials[J]. J Appl Phys, 2014, 115(2): 024305.
[103]SUGIMOTO W, IWATA H, TAKASU Y, et al. Preparation of ruthenic acid nanosheets and utilization of its interlayer surface for electrochemical energy storage[J]. Angew Chem Int Ed, 2003, 42(34): 4092–4096.
[104]ZHAO MQ, ZHANG Q, WEI F, et al. Hierarchical nanocomposites derived from nanocarbons and layered double hydroxides-properties, synthesis and applications[J]. Adv Funct Mater, 2012, 22(4): 675–694.
[105]CHOI I Y, LEE J, PARK M J, et al. High-conductivity two-dimensional polyaniline nanosheets developed on ice surfaces[J]. Angew Chem Int Ed, 2015, 54(36): 10497–10501.
[106]ZANG X, KANG F, ZHU H, et al. Graphene/polyaniline woven fabric composite films as flexible supercapacitor electrodes[J]. Nanoscale, 2015, 7(16): 7318–7322.
[107]ACERCE M, VOIRY D, CHHOWALLA M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials[J]. Nat Nanotechnol, 2015, 10(4): 313–318.
[108]LING Z, BARSOUM M W, GOGOTSI Y, et al. Flexible and conductive MXene films and nanocomposites with high capacitance[J]. PNAS, 2014, 111(47): 16676–16681.
[109]ZHU H, WEI J, WU D, et al. Applications of carbon materials in photovoltaic solar cells[J]. Solar Energy Mater Solar Cells, 2009, 93(9): 1461–1470.
[110]ROY-MAYHEW J D, AKSAY I A. Graphenematerials and their use in dye-sensitized solar cells[J]. Chem Rev, 2014, 114(12): 6323–6348.
[111]WANG Q H, COLEMAN J N, STRANO M S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nat Nanotechnol, 2012, 7(11): 699–712.
[112]LIU Z, LAU S P, YAN F. Functionalized graphene and other two-dimensional materials for photovoltaic devices: device design and processing[J]. Chem Soc Rev, 2015, 44(15): 5638–5679.
[113]WU M, WANG Y, MA T, et al. Economical and effective sulfide catalysts for dye-sensitized solar cells as counter electrodes[J]. Phys Chem Chem Phys, 2011, 13(43): 19298–19301.
[114]FINN S T, MACDONALD J E. Petaled molybdenum disulfide surfaces: facile synthesis of a superior cathode for QDSSCs[J]. Adv Energy Mater, 2014, 4(14). DOI: 10.1002/aenm.201400495.
[115]HE Q, WU S, ZHANG H, et al. Graphene-based electronic sensors[J]. Chem Sci, 2012, 3(6): 1764–1772.
[116]LI H, YIN Z, ZHANG H, et al. Fabrication of SIngle- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature[J]. Small, 2012, 8(1): 63–67.
[117]KOU L, FRAUENHEIM T, CHEN C. Phosphorene as a superior gas sensor: selective adsorption and distinct I-V response[J]. J Phys Chem Lett, 2014, 5(15): 2675–2681.
[118]FAN H, JIA X. Selective detection of acetone and gasoline by temperature modulation in zinc oxide nanosheets sensors[J]. Solid State Ionics, 2011, 192(1): 688–692.
[119]LU CH, CHEN X, CHEN GN, et al. A graphene platform for sensing biomolecules[J]. Angew Chem Int Ed, 2009, 48(26): 4785–4787.
[120]ZHANG Y, ZHENG B, ZHANG H, et al. Single-layer transition metal dichalcogenide nanosheet based nanosensors for rapid, sensitive, and multiplexed detection of DNA[J]. Adv Mater, 2015, 27(5): 935–939.
[121]WANG Q, WANG W, JU H, et al. Fluorescence quenching of carbon nitride nanosheet through its interaction with DNA for versatile fluorescence sensing[J]. Anal Chem, 2013, 85(24): 12182–12188.
[122]ZHAO M, WANG Y, ZHANG H, et al. Ultrathin 2D metal-organic framework nanosheets[J]. Adv Mater, 2015, 27(45): 7372–7378.
[123]WU S, HE Q, ZHANG H, et al. Graphene-based electrochemical sensors[J]. Small, 2013, 9(8): 1160–1172.
[124]KANNAN P K, LATE D J, ROUT C S, et al. Recent developments in 2D layered inorganic nanomaterials for sensing[J]. Nanoscale, 2015, 7(32): 13293–13312.
[125]LIU H, DUAN C, ZHU Z, et al. A novel nitrite biosensor based on the direct electrochemistry of hemoglobin immobilized on MXene-Ti3C2[J]. Sens Actuators, B, 2015, 218: 60–66.
[126]WANG Y, ZHAO M, ZHANG H, et al. Bioinspired design of ultrathin 2D bimetallic metal-organic-framework nanosheets used as biomimetic enzymes[J]. Adv Mater, 2016, 28(21): 4149–4155.
[127]COHEN-TANUGI D, GROSSMAN J C. Water desalination across nanoporous graphene[J]. Nano Lett, 2012, 12(7): 3602–3608.
[128]SUN P, WANG K, ZHU H. Recent developments in graphene-based membranes: structure, mass-transport mechanism and potential applications[J]. Adv Mater, 2016, 28(12): 2287–2310.
[129]SUN L, XU Z, PENG X, et al. Ultrafast Molecule separation through layered WS2 nanosheet membranes[J]. Acs Nano, 2014, 8(6): 6304–6311.
[130]DING L, WEI Y, WANG H, et al. A two-dimensional lamellar membrane: mxene nanosheet stacks[J]. Angew Chem Int Ed Eng, 2017, 56(7): 1825–1829.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com