[1]BULLARD J W, JENNINGS H M, LIVINGSTON R A, et al. Mechanisms of cement hydration[J]. Cem Concr Res, 2011, 41(12): 1208–1223.
[2]DAMIDOT D, BELLMANN F, MÖSER B, et al. Calculation of the dissolution rate of tricalcium silicate in several electrolyte compositions[J]. Cement Wapno Beton, 2007, 12/74(2): 57–67.
[3]BULLARD J W, SCHERER G W, THOMAS J J. Time dependent driving forces and the kinetics of tricalcium silicate hydration[J]. Cem Concr Res, 2015, 74: 26–34.
[4]STEIN H N, STEVELS J M. Influence of silica on the hydration of 3CaO, SiO2[J]. J App Chem, 2010, 14(8): 338–346.
[5]JENNINGS H M, PRATT P L. An experimental argument for the existence of a protective membrane surrounding portland cement during the induction period[J]. Cem Concr Res, 1979, 9(4): 501–506.
[6]GARTNER E M, GAIDIS J M. Hydration Mechanisms I[M]//The Materials Science of Concrete I, 1989: 210–223.
[7]LIVINGSTON R A, SCHWEITZER J S, ROLFS C, et al. Characterization of the induction period in tricalcium silicate hydration by nuclear resonance reaction analysis[J]. J Mater Res, 2001, 16(3): 687–693.
[8]SCHWEITZER J W, LIVINGSTON R A, ROLFS C, et al. In situ measurements of the cement hydration profile during the induction period[C]//Proceedings of the Twelfth International Congress on the Chemistry of Cement, National Research Council of Canada, Montreal, Canada, 2007.
[9]JUILLAND P, GALLUCCI E, FLATT R, et al. Dissolution theory applied to the induction period in alite hydration[J]. Cem Concr Res, 2010, 40(6): 831–844.
[10]SCRIVENER K L, NONAT A. Hydration of cementitious materials, present and future[J]. Cem Concr Res, 2011, 41(7): 651–665.
[11]SCRIVENER K L, JUILLAND P, MONTEIRO P J M. Advances in understanding hydration of Portland cement[J]. Cem Concr Res, 2015, 78: 38–56.
[12]MAKAR J M, CHAN G W. End of the Induction period in ordinary portland cement as examined by high-resolution scanning electron microscopy[J]. J Am Ceram Soc, 2008, 91(4): 1292–1299.
[13]BAZZONI A, MA S, WANG Q, et al. The effect of magnesium and zinc ions on the hydration kinetics of C3S[J]. J Am Ceram Soc, 2014, 97(11): 3684–3693.
[14]XIE T, BIERNACKI J J. The origins and evolution of cement hydration models[J]. Com Concr, 2011, 8(6): 647–675.
[15]THOMAS J J, BIERNACKI J J, BULLARD J W, et al. Modeling and simulation of cement hydration kinetics and microstructure development[J]. Cem Concr Res, 2011, 41(12): 1257–1278.
[16]THOMAS J J. A new approach to modeling the nucleation and growth kinetics of tricalcium silicate hydration[J]. J Am Ceram Soc, 2007, 90(10): 3282–3288.
[17]THOMAS J J, ALLEN A J, JENNINGS H M. Hydration kinetics and microstructure development of normal and CaCl2–accelerated tricalcium silicate pastes[J]. J Phys Chem C, 2009, 113(46): 19836–19844.
[18]SCHERER G W, ZHANG J, THOMAS J J. Nucleation and growth models for hydration of cement[J]. Cem Concr Res, 2012, 42(7): 982–993.
[19]JENNINGS H M, JOHNSON S K. Simulation of microstructure development during the hydration of a cement compound[J]. J Am Ceram Soc, 1986, 69(11): 790–795.
[20]VAN BREUGEL K. Numerical simulation of hydration and microstructural development in hardening cement–based materials (II) applications[J]. Cem Concr Res, 1995, 25: 522–530.
[21]GARBOCZI E J, BENTZ D P. Computer simulation of the diffusivity of cement–based materials[J]. J Mater Sci, 1992, 27(8): 2083–2092.
[22]BULLARD J W. A three–dimensional microstructural model of reactions and transport in aqueous mineral systems[J]. Modell Simulat Mater Sci Eng, 2007, 15(7): 711–738.
[23]BISHNOI S, SCRIVENER K L. µic: A new platform for modelling the hydration of cements[J]. Cem Concr Res, 2009, 39(4): 266–274.
[24]MAEKAWA K, ISHIDA T, KISHI T. Multi–Scale Modeling of Structural Concrete[M]. Taylor & Francis, 2008.
[25]ISHIDAT, LUAN Y, SAGAWA T, NAWAT. Modeling of early age behavior of blast furnace slag concrete based on micro–physical properties[J]. Cem Concr Res, 2011, 41(12): 1357–1367.
[26]JUENGER MCG, SIDDIQUE R. Recent advances in understanding the role of supplementary cementitious materials in concrete[J]. Cem Concr Res, 2015, 78: 71–80.
[27]GURSEL A P, MASANET E, HORVATH A, et al. Life-cycle inventory analysis of concrete production: a critical review[J]. Cem Concr Compos, 2014, 51: 38–48.
[28]ZHANG T, YU Q, WEI J, et al. Efficient utilization of cementitious materials to produce sustainable blended cement[J]. Cem Concr Compos, 2012, 34(5): 692–699.
[29]JUENGER M, PROVIS JL, ELSEN J, et al. Supplementary cementitious materials for concrete: characterization needs[C]//MRS proceedings. Cambridge University Press, 2012, 1488: imrc12-1488-7b-026.
[30]TAYLOR-LANGE SC, LAMON E L, RIDING KA, et al. Calcined kaolinite–bentonite clay blends as supplementary cementitious materials[J]. Appl Clay Sci, 2015, 108: 84–93.
[31]FEDERICO LM, CHIDIAC SE, RAKI L. Reactivity of cement mixtures containing waste glass using thermal analysis[J]. J Thermal Analy Calorim, 2011, 104(3): 849–858.
[32]LOTHENBACH B, SCRIVENER K, HOOTON R D. Supplementary cementitious materials[J]. Cem Concr Res, 2011, 41(12): 1244–1256.
[33]BERODIER E, SCRIVENER K. Understanding the Filler Effect on the Nucleation and Growth of C-S-H[J]. J Am Ceram Soc, 2014, 97(12): 3764–3773.
[34]BERODIER E M J. Impact of the supplementary cementitious materials on the kinetics and microstructural development of cement hydration[D]. ÉCole Polytechnique Fédérale De Lausanne, 2015.
[35]HAN F H, LIU J H, YAN P Y. Comparative study of reaction degree of mineral admixture by selective dissolution and image analysis[J]. Construct Build Mater, 2016, 114: 946–955.
[36]YAN P Y, HAN F H. Quantitative study of hydration degree of composite binder by image analysis and non-evaporable water content[J]. J Chin Ceram Soc, 2015, 43(10): 1331–1340.
[37]ELAKNESWARAN Y, OWAKI E, MIYAHARA S, et al. Hydration study of slag–blended cement based on thermodynamic considerations[J]. Construct Build Mater, 2016, 124: 615–625.
[38]PARK K B, NOGUCHI T, PLAWSKY J. Modeling of hydration reactions using neural networks to predict the average properties of cement paste[J]. Cem Concr Res, 2005, 35(9): 1676–1684.
[39]PARK K B, JEE N Y, YOON I S, et al. Prediction of temperature distribution in high–strength concrete using hydration model[J]. Aci Mater J, 2008, 105(2): 180–186.
[40]WANG X Y, LEE H S, PARK K B, et al. A multi–phase kinetic model to simulate hydration of slag–cement blends[J]. Cem Concr Compos, 2010, 32(6): 468–477.
[41]WANG X Y, LEE H S. A model for predicting the carbonation depth of concrete containing low–calcium fly ash[J]. Construct Build Mater, 2009, 23(2): 725–733.
[42]WANG X Y. Properties prediction of ultra high performance concrete using blended cement hydration model[J]. Construct Build Mater, 2014, 64(30): 1–10.
[43]NAVI P, PIGNAT C. Simulation of cement hydration and the connectivity of the capillary pore space[J]. Adv Cem Based Mater, 1996, 4(2): 58–67.
[44]MERZOUKI T, BOUASKER M, KHALIFA N E H, et al. Contribution to the modeling of hydration and chemical shrinkage of slag–blended cement at early age[J]. Construct Build Mater, 2013, 44(44): 368–380.
[45]NAVARRO-BLASCO I, PÉREZ-NICOLÁS M, FERNÁNDEZ J M, et al. Assessment of the interaction of polycarboxylate super plasticizers in hydrated lime pastes modified with nanosilica or metakaolin as pozzolanicreactives[J]. Construct Build Mater, 2014, 73: 1–12.
[46]BURGOS-MONTES O, PALACIOS M, RIVILLA P, et al. Compatibility between superplasticizer admixtures and cements with mineral additions[J]. Construct Build Mater, 2012, 31: 300–309.
|