首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
复合胶凝材料的水化硬化机理
作者:阎培渝 张增起 
单位:清华大学土木工程系 北京 100084 
关键词:复合胶凝材料 硅酸盐水泥 水化机理 矿物掺合料 
分类号:TU528.44
出版年,卷(期):页码:2017,45(8):1066-1072
DOI:
摘要:

?近年来,有关复合胶凝材料的水化硬化机理的研究取得了较大进展。硅酸盐水泥在不同水化阶段的反应机理被广泛深入地探讨,建立了一些水泥基材料水化动力学和浆体微结构形成的预测模型。越来越多的矿物掺合料用于混凝土的制备。本文重点总结了硅酸盐水泥早龄期水化机理、矿物掺合料对硅酸盐水泥水化的影响以及复合胶凝材料反应过程模拟的研究进展。

 

 In recent years, the hydration mechanism of composite cementitious materials was intensively studied. The mechanisms governing different hydration periods of Portland cement have been widely discussed. Some kinetics models were issued to describe the hydration process of cementitious materials and the formation of paste microstructure. More and more mineral admixture were used during the production of cement and preparation of concrete to improve its workability, mechanical property and durability. In this article, the early hydration mechanisms of the Portland cement, the influence of mineral admixture on the hydration of Portland cement and the simulation of hydration process of composite cementitious materials were reviewed.

 
基金项目:
国家自然科学基金项目(No. 51678344)。
作者简介:
阎培渝(1955—),男,博士,教授
参考文献:

 [1]BULLARD J W, JENNINGS H M, LIVINGSTON R A, et al. Mechanisms of cement hydration[J]. Cem Concr Res, 2011, 41(12): 1208–1223.

[2]DAMIDOT D, BELLMANN F, MÖSER B, et al. Calculation of the dissolution rate of tricalcium silicate in several electrolyte compositions[J]. Cement Wapno Beton, 2007, 12/74(2): 57–67.
[3]BULLARD J W, SCHERER G W, THOMAS J J. Time dependent driving forces and the kinetics of tricalcium silicate hydration[J]. Cem Concr Res, 2015, 74: 26–34.
[4]STEIN H N, STEVELS J M. Influence of silica on the hydration of 3CaO, SiO2[J]. J App Chem, 2010, 14(8): 338–346.
[5]JENNINGS H M, PRATT P L. An experimental argument for the existence of a protective membrane surrounding portland cement during the induction period[J]. Cem Concr Res, 1979, 9(4): 501–506.
[6]GARTNER E M, GAIDIS J M. Hydration Mechanisms I[M]//The Materials Science of Concrete I, 1989: 210–223.
[7]LIVINGSTON R A, SCHWEITZER J S, ROLFS C, et al. Characterization of the induction period in tricalcium silicate hydration by nuclear resonance reaction analysis[J]. J Mater Res, 2001, 16(3): 687–693.
[8]SCHWEITZER J W, LIVINGSTON R A, ROLFS C, et al. In situ measurements of the cement hydration profile during the induction period[C]//Proceedings of the Twelfth International Congress on the Chemistry of Cement, National Research Council of Canada, Montreal, Canada, 2007.
[9]JUILLAND P, GALLUCCI E, FLATT R, et al. Dissolution theory applied to the induction period in alite hydration[J]. Cem Concr Res, 2010, 40(6): 831–844.
[10]SCRIVENER K L, NONAT A. Hydration of cementitious materials, present and future[J]. Cem Concr Res, 2011, 41(7): 651–665.
[11]SCRIVENER K L, JUILLAND P, MONTEIRO P J M. Advances in understanding hydration of Portland cement[J]. Cem Concr Res, 2015, 78: 38–56.
[12]MAKAR J M, CHAN G W. End of the Induction period in ordinary portland cement as examined by high-resolution scanning electron microscopy[J]. J Am Ceram Soc, 2008, 91(4): 1292–1299.
[13]BAZZONI A, MA S, WANG Q, et al. The effect of magnesium and zinc ions on the hydration kinetics of C3S[J]. J Am Ceram Soc, 2014, 97(11): 3684–3693.
[14]XIE T, BIERNACKI J J. The origins and evolution of cement hydration models[J]. Com Concr, 2011, 8(6): 647–675.
[15]THOMAS J J, BIERNACKI J J, BULLARD J W, et al. Modeling and simulation of cement hydration kinetics and microstructure development[J]. Cem Concr Res, 2011, 41(12): 1257–1278.
[16]THOMAS J J. A new approach to modeling the nucleation and growth kinetics of tricalcium silicate hydration[J]. J Am Ceram Soc, 2007, 90(10): 3282–3288.
[17]THOMAS J J, ALLEN A J, JENNINGS H M. Hydration kinetics and microstructure development of normal and CaCl2–accelerated tricalcium silicate pastes[J]. J Phys Chem C, 2009, 113(46): 19836–19844.
[18]SCHERER G W, ZHANG J, THOMAS J J. Nucleation and growth models for hydration of cement[J]. Cem Concr Res, 2012, 42(7): 982–993.
[19]JENNINGS H M, JOHNSON S K. Simulation of microstructure development during the hydration of a cement compound[J]. J Am Ceram Soc, 1986, 69(11): 790–795.
[20]VAN BREUGEL K. Numerical simulation of hydration and microstructural development in hardening cement–based materials (II) applications[J]. Cem Concr Res, 1995, 25: 522–530.
[21]GARBOCZI E J, BENTZ D P. Computer simulation of the diffusivity of cement–based materials[J]. J Mater Sci, 1992, 27(8): 2083–2092.
[22]BULLARD J W. A three–dimensional microstructural model of reactions and transport in aqueous mineral systems[J]. Modell Simulat Mater Sci Eng, 2007, 15(7): 711–738.
[23]BISHNOI S, SCRIVENER K L. µic: A new platform for modelling the hydration of cements[J]. Cem Concr Res, 2009, 39(4): 266–274.
[24]MAEKAWA K, ISHIDA T, KISHI T. Multi–Scale Modeling of Structural Concrete[M]. Taylor & Francis, 2008.
[25]ISHIDAT, LUAN Y, SAGAWA T, NAWAT. Modeling of early age behavior of blast furnace slag concrete based on micro–physical properties[J]. Cem Concr Res, 2011, 41(12): 1357–1367.
[26]JUENGER MCG, SIDDIQUE R. Recent advances in understanding the role of supplementary cementitious materials in concrete[J]. Cem Concr Res, 2015, 78: 71–80.
[27]GURSEL A P, MASANET E, HORVATH A, et al. Life-cycle inventory analysis of concrete production: a critical review[J]. Cem Concr Compos, 2014, 51: 38–48.
[28]ZHANG T, YU Q, WEI J, et al. Efficient utilization of cementitious materials to produce sustainable blended cement[J]. Cem Concr Compos, 2012, 34(5): 692–699.
[29]JUENGER M, PROVIS JL, ELSEN J, et al. Supplementary cementitious materials for concrete: characterization needs[C]//MRS proceedings. Cambridge University Press, 2012, 1488: imrc12-1488-7b-026.
[30]TAYLOR-LANGE SC, LAMON E L, RIDING KA, et al. Calcined kaolinite–bentonite clay blends as supplementary cementitious materials[J]. Appl Clay Sci, 2015, 108: 84–93.
[31]FEDERICO LM, CHIDIAC SE, RAKI L. Reactivity of cement mixtures containing waste glass using thermal analysis[J]. J Thermal Analy Calorim, 2011, 104(3): 849–858.
[32]LOTHENBACH B, SCRIVENER K, HOOTON R D. Supplementary cementitious materials[J]. Cem Concr Res, 2011, 41(12): 1244–1256.
[33]BERODIER E, SCRIVENER K. Understanding the Filler Effect on the Nucleation and Growth of C-S-H[J]. J Am Ceram Soc, 2014, 97(12): 3764–3773.
[34]BERODIER E M J. Impact of the supplementary cementitious materials on the kinetics and microstructural development of cement hydration[D]. ÉCole Polytechnique Fédérale De Lausanne, 2015.
[35]HAN F H, LIU J H, YAN P Y. Comparative study of reaction degree of mineral admixture by selective dissolution and image analysis[J]. Construct Build Mater, 2016, 114: 946–955.
[36]YAN P Y, HAN F H. Quantitative study of hydration degree of composite binder by image analysis and non-evaporable water content[J]. J Chin Ceram Soc, 2015, 43(10): 1331–1340.
[37]ELAKNESWARAN Y, OWAKI E, MIYAHARA S, et al. Hydration study of slag–blended cement based on thermodynamic considerations[J]. Construct Build Mater, 2016, 124: 615–625.
[38]PARK K B, NOGUCHI T, PLAWSKY J. Modeling of hydration reactions using neural networks to predict the average properties of cement paste[J]. Cem Concr Res, 2005, 35(9): 1676–1684.
[39]PARK K B, JEE N Y, YOON I S, et al. Prediction of temperature distribution in high–strength concrete using hydration model[J]. Aci Mater J, 2008, 105(2): 180–186.
[40]WANG X Y, LEE H S, PARK K B, et al. A multi–phase kinetic model to simulate hydration of slag–cement blends[J]. Cem Concr Compos, 2010, 32(6): 468–477.
[41]WANG X Y, LEE H S. A model for predicting the carbonation depth of concrete containing low–calcium fly ash[J]. Construct Build Mater, 2009, 23(2): 725–733.
[42]WANG X Y. Properties prediction of ultra high performance concrete using blended cement hydration model[J]. Construct Build Mater, 2014, 64(30): 1–10.
[43]NAVI P, PIGNAT C. Simulation of cement hydration and the connectivity of the capillary pore space[J]. Adv Cem Based Mater, 1996, 4(2): 58–67.
[44]MERZOUKI T, BOUASKER M, KHALIFA N E H, et al. Contribution to the modeling of hydration and chemical shrinkage of slag–blended cement at early age[J]. Construct Build Mater, 2013, 44(44): 368–380.
[45]NAVARRO-BLASCO I, PÉREZ-NICOLÁS M, FERNÁNDEZ J M,  et al. Assessment of the interaction of polycarboxylate super plasticizers in hydrated lime pastes modified with nanosilica or metakaolin as pozzolanicreactives[J]. Construct Build Mater, 2014, 73: 1–12.
[46]BURGOS-MONTES O, PALACIOS M, RIVILLA P, et al. Compatibility between superplasticizer admixtures and cements with mineral additions[J]. Construct Build Mater, 2012, 31: 300–309.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com