首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
细度和煅烧温度对煤矸石火山灰活性及微观结构的影响
作者:曹永丹 李彦鑫 张金山 曹钊 孙春宝 
单位:内蒙古科技大学矿业研究院 内蒙古 包头 014010 
关键词:煤矸石 煅烧活化 偏高岭石 火山灰活性 微观结构 
分类号:TU528
出版年,卷(期):页码:2017,45(8):1153-1158
DOI:
摘要:

 通过化学吸钙量和水泥胶砂力学强度测试,研究了煅烧温度及细度对煅烧煤矸石火山灰活性的影响,并结合X射线衍射、红外光谱、扫描电镜和热重测试,研究了煤矸石不同煅烧温度下矿物组成、化学结构及表面形貌发生的变化。结果表明:细度和煅烧温度都会对煅烧煤矸石火山灰活性产生影响,粒度越细煅烧煤矸石的火山灰活性越大,最佳煅烧温度为800 ℃左右;500 ℃煅烧时煤矸石中高岭石开始发生脱羟基反应,其层状结构逐渐被破坏;600~800 ℃煅烧时高岭石完全转变为多孔无序、非晶结构的偏高岭石;煅烧至1 000 ℃时偏高岭石转化为晶态的莫来石和方石英,使煅烧煤矸石无序度变差、火山灰活性变弱。

 

 The effects of calcination temperature and fineness on the pozzolanic activity of calcined coal gangue were investigated via chemical calcium absorption amount tests and mechanical strength measurement of cement mortar. The mineral composition, chemical structure and topography of coal gangue were analyzed by using X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectrometry and thermogravimetry analysis-differential scanning calorimetry, respectively. The results show that the fineness and calcination temperature both affect the pozzolanic activity of calcined coal gangue, and the pozzolanic activity increases with the decrease of fineness. The optimal calcination temperature is 800 ℃. The dehydroxylation of kaolinite begins when coal gangue is calcined at 500 ℃, which gradually destroys the lamellar structure of kaolinite. Kaolinite completely transforms into porous and disorderly, amorphous structural metakaolinite when calcination temperature is from 600 ℃ to 800 ℃. When calcined at 1 000 ℃, metakaolinite transforms into crystalline mullite and cristobalite, decreasing the disorder degree and pozzolanic activity of calcined coal gangue.

 
基金项目:
内蒙古自然科学基金(2017MS(LH)0521);内蒙古高等学校科研项目(NJZY17174);国家自然科学基金(51464037)。
作者简介:
曹永丹(1986—),女,讲师,博士研究生。
参考文献:

 [1] DENG J, LI B, XIAO Y, et al. Combustion properties of coal gangue using thermogravimetry–Fourier transform infrared spectroscopy[J]. Appl Therm Eng, 2017, 116: 244–252.

[2] 李款, 卢都友, 李孟浩, 等. 用水量对偏高岭土基地聚合物微观结构及反应过程的影响[J]. 硅酸盐学报, 2016, 44(2): 181–186.
LI Kuan, LU Duyou, LI Menghao, et al. J Chin Ceram Soc, 2016, 44(2): 181–186.
[3] SIDDIQUE R. KLAUS J. Influence of metakaolin on the properties of mortar and concrete: A review[J]. Appl Clay Sci, 2009, 43(3/4): 392–400.
[4] MAHI P, LIVINGSTON W, ROGERS D, et al. The use of coal spoils as feed materials for alumina recovery by acid leaching routes. Part 6: The purification and crystallization of chloride and chloride/fluoride leach liquors by HCl gas precipitation[J]. Hydrometallurgy, 1991, 26(1): 75–91.
[5] ZHANG C, YANG X, LI Y. Mechanism and structural analysis of the thermal activation of coal-gangue[J]. Adv Mater Res, 2011, 356–360: 1807–12.
[6] ZHANG Y, XU L, SEETHARAMAN S, et al. Effects of chemistry and mineral on structural evolution and chemical reactivity of coal gangue during calcination: towards efficient utilization[J]. Mater Struct, 2015, 48(9): 2779–2793.
[7] YAO Y, SUN H. A novel silica alumina-based backfill material composed of coal refuse and fly ash[J]. J Hazard Mater, 2012, 213(3): 71–82
[8] LI L, ZHANG Y, ZHANG Y, et al. The thermal activation process of coal gangue selected from Zhungeer in China[J]. J Therm Anal Calorim, 2016, 126(3): 1559–1566.
[9] FRIAS M, ROJAS M, GARCIA R, et al. Effect of activated coal mining wastes on the properties of blended cement[J]. Cem Concr Compos, 2012, 34(5): 678–683.
[10] QIAO X, SI P, YU J. A systematic investigation into the extraction of aluminum from coal spoil through kaolinite[J]. Environ Sci Technol, 2008, 42(22): 8541–8546.
[11] PERRAKI T, KAKALI G, KONTORI E. Characterization and pozzolanic activity of thermally treated zeolite[J]. J Therm Anal Calorim, 2005, 82: 109–113.
[12] ADAMIEC P, BENEZET J, BENHASSAINE A. Pozzolanic reactivity of silico-aluminous fly ash[J]. Particuology, 2008(6): 93–98.
[13] MELO K A, CARNEIRO A M P. Effect of Metakaolin’s finesses and content in self-consolidating concrete[J]. Constr Build Mater, 2010, 24: 1529–1535.
[14] BUCHWALD A, HOHMANN M, POSERN K, et al. The suitability of thermally activated illite/smectite clay as raw material for geopolymer binders[J]. Appl Clay Sci, 2009, 46: 300–304.
[15] GIMENEZ-GARCIA R, MENCIA R, RUBIO V, et al. The Transformation of Coal-Mining Waste Minerals in the Pozzolanic Reactions of Cements[J]. Minerals, 2016(6): 64–75.
[16] BICH C, AMBROISE J, PERA J. Influence of degree of dehydroxylation on the pozzolanic activity of metakaolin[J]. Appl Clay Sci, 2009, 44: 194–200.
[17] KAKALI G, PERRAKI T, TSIVILLIS S, et al. Thermal treatment of kaolin: the effect of mineralogy on the pozzolanic activity[J]. Appl Clay Sci, 2001, 20: 73–80.
[18] CHENG H, LIU Q, CUI X, et al. Mechanism of dehydroxylation temperature decrease and high temperature phase transition of coal-bearing strata kaolinite intercalated by potassium acetate[J]. J Colloid Interface Sci, 2012, 376: 47–56.
[19] CHENG H, LIU Q, YANG J, et al. Thermogravimetric analysis of selected coal bearing strata kaolinite[J]. Thermochim Acta, 2010, 507/508(33): 84–90.
[20] MING H. Modification of kaolinite by controlled hydrothermal deuteration-a DRIFT spectroscopic study[J]. Clay Miner, 2004, 39(3), 349–362.
[21] VIZCAYNO C, GUTIERREZ R, CASTELLO R, et al. Pozzolan obtained by mechanochemical and thermal treatments of kaolin[J]. Appl Clay Sci, 2010, 49(4): 405–413.
[22] ILIC B, MITROVIC A, MILICIC L, et al. Thermal treatment of kaolin clay to obtain metakaolin[J]. Hem Ind, 2010, 64(4): 351–356.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com