[1] DENG J, LI B, XIAO Y, et al. Combustion properties of coal gangue using thermogravimetry–Fourier transform infrared spectroscopy[J]. Appl Therm Eng, 2017, 116: 244–252.
[2] 李款, 卢都友, 李孟浩, 等. 用水量对偏高岭土基地聚合物微观结构及反应过程的影响[J]. 硅酸盐学报, 2016, 44(2): 181–186.
LI Kuan, LU Duyou, LI Menghao, et al. J Chin Ceram Soc, 2016, 44(2): 181–186.
[3] SIDDIQUE R. KLAUS J. Influence of metakaolin on the properties of mortar and concrete: A review[J]. Appl Clay Sci, 2009, 43(3/4): 392–400.
[4] MAHI P, LIVINGSTON W, ROGERS D, et al. The use of coal spoils as feed materials for alumina recovery by acid leaching routes. Part 6: The purification and crystallization of chloride and chloride/fluoride leach liquors by HCl gas precipitation[J]. Hydrometallurgy, 1991, 26(1): 75–91.
[5] ZHANG C, YANG X, LI Y. Mechanism and structural analysis of the thermal activation of coal-gangue[J]. Adv Mater Res, 2011, 356–360: 1807–12.
[6] ZHANG Y, XU L, SEETHARAMAN S, et al. Effects of chemistry and mineral on structural evolution and chemical reactivity of coal gangue during calcination: towards efficient utilization[J]. Mater Struct, 2015, 48(9): 2779–2793.
[7] YAO Y, SUN H. A novel silica alumina-based backfill material composed of coal refuse and fly ash[J]. J Hazard Mater, 2012, 213(3): 71–82
[8] LI L, ZHANG Y, ZHANG Y, et al. The thermal activation process of coal gangue selected from Zhungeer in China[J]. J Therm Anal Calorim, 2016, 126(3): 1559–1566.
[9] FRIAS M, ROJAS M, GARCIA R, et al. Effect of activated coal mining wastes on the properties of blended cement[J]. Cem Concr Compos, 2012, 34(5): 678–683.
[10] QIAO X, SI P, YU J. A systematic investigation into the extraction of aluminum from coal spoil through kaolinite[J]. Environ Sci Technol, 2008, 42(22): 8541–8546.
[11] PERRAKI T, KAKALI G, KONTORI E. Characterization and pozzolanic activity of thermally treated zeolite[J]. J Therm Anal Calorim, 2005, 82: 109–113.
[12] ADAMIEC P, BENEZET J, BENHASSAINE A. Pozzolanic reactivity of silico-aluminous fly ash[J]. Particuology, 2008(6): 93–98.
[13] MELO K A, CARNEIRO A M P. Effect of Metakaolin’s finesses and content in self-consolidating concrete[J]. Constr Build Mater, 2010, 24: 1529–1535.
[14] BUCHWALD A, HOHMANN M, POSERN K, et al. The suitability of thermally activated illite/smectite clay as raw material for geopolymer binders[J]. Appl Clay Sci, 2009, 46: 300–304.
[15] GIMENEZ-GARCIA R, MENCIA R, RUBIO V, et al. The Transformation of Coal-Mining Waste Minerals in the Pozzolanic Reactions of Cements[J]. Minerals, 2016(6): 64–75.
[16] BICH C, AMBROISE J, PERA J. Influence of degree of dehydroxylation on the pozzolanic activity of metakaolin[J]. Appl Clay Sci, 2009, 44: 194–200.
[17] KAKALI G, PERRAKI T, TSIVILLIS S, et al. Thermal treatment of kaolin: the effect of mineralogy on the pozzolanic activity[J]. Appl Clay Sci, 2001, 20: 73–80.
[18] CHENG H, LIU Q, CUI X, et al. Mechanism of dehydroxylation temperature decrease and high temperature phase transition of coal-bearing strata kaolinite intercalated by potassium acetate[J]. J Colloid Interface Sci, 2012, 376: 47–56.
[19] CHENG H, LIU Q, YANG J, et al. Thermogravimetric analysis of selected coal bearing strata kaolinite[J]. Thermochim Acta, 2010, 507/508(33): 84–90.
[20] MING H. Modification of kaolinite by controlled hydrothermal deuteration-a DRIFT spectroscopic study[J]. Clay Miner, 2004, 39(3), 349–362.
[21] VIZCAYNO C, GUTIERREZ R, CASTELLO R, et al. Pozzolan obtained by mechanochemical and thermal treatments of kaolin[J]. Appl Clay Sci, 2010, 49(4): 405–413.
[22] ILIC B, MITROVIC A, MILICIC L, et al. Thermal treatment of kaolin clay to obtain metakaolin[J]. Hem Ind, 2010, 64(4): 351–356.
|