首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
超低温烧结微波介质陶瓷研究进展
作者:张高群 汪宏 
单位:西安交通大学电子与信息工程学院 西安 710049 
关键词:微波介质陶瓷 超低温烧结 介电性能 
分类号:TQ174
出版年,卷(期):页码:2017,45(9):1256-1264
DOI:10.14062/j.issn.0454-5648.2017.09.05
摘要:

超低温烧结微波介质陶瓷作为无源集成技术的主要介质材料,可广泛应用于无线通讯、可穿戴电子、物联网和全球定位系统等领域,其相关研究具有重要的应用价值和理论指导意义,是目前功能材料领域的研究热点之一。本文综合介绍了超低温烧结微波介质陶瓷材料的应用背景和主要的材料体系,以及主要材料体系的介电性能和优缺点,探讨了材料组分、介电常数、Qf值、频率温度系数之间的关系,阐述了超低温烧结陶瓷材料的性能调控手段,并指出了今后超低温烧结微波介质陶瓷材料的主要发展前景和研究方向。钼酸盐基超低温烧结陶瓷兼具超低烧结温度、系列化介电常数和低损耗等优点,有望实现在超低温共烧技术中的应用。离子取代和多相复合是有效调控材料微波介电性能的方法,使材料更利于应用。

 

 The ultra-low temperature co-fired ceramics (ULTCC) can be widely used in various fields like wireless communication, wearable electronics, internet and global positioning system, etc. Studies on the theories and practical application of these dielectric materials have attracted much attention, especially for microwave dielectric ceramics. This review introduced the development of ultra-low temperature co-fired ceramics for microwave applications. The microwave dielectric properties and the advantages/disadvantages of the materials were also represented. The relationships among the material composition, dielectric constant, Qf value and temperature coefficient of resonance frequency were discussed. The performance tailoring and controlling of the ultra-low temperature co-fired ceramics were analyzed. Further studies on this aspect were prospected. The molybdate based ultra-low temperature sintering ceramics with ultra-low sintering temperatures, series of dielectric constants and low dielectric loss could be potentially used in ultra-low temperature co-firing technology. The ionic substitution and multiphase composite both are effective ways to regulate the microwave dielectric properties for the use of the materials.

 
基金项目:
国家重点研发计划(2017YFB0406303)资助。
作者简介:
张高群(1987—),女,博士。
参考文献:

 [1]IMANAKA Y. Multilayered low temperature cofired ceramics (LTCC) technology[M]. New York: Springer Science & Business Media, 2005: 1–98.

[2]SEBASTIAN M T, JANTUNEN H. Low loss dielectric materials for LTCC applications: a review[J]. Int Mater Rev, 2008, 53(2): 57–90.
[3]SEBASTIAN M T, WANG H, JANTUNEN H. Low temperature cofired ceramics with ultra-low sintering temperature: a review[J]. Curr Opin Solid St M, 2016, 20(3): 151–170.
[4]YU H, LIU J, ZHANG W, et al. Ultra-low sintering temperature ceramics for LTCC applications: a review[J]. J Mater Sci: Mater Electron, 2015, 26(12): 9414–9423.
[5]张高群. 新型钼基A2O–MoO3超低温烧结微波介质陶瓷研究[D]. 西安: 西安交通大学, 2017.
ZHANG Gaoqun. Study on the novel molybdenum-based A2O–MoO3 microwave dielectric ceramics with ultra-low sintering temperatures (in Chinese, dissertation). Xi'an: Xi'an Jiaotong University, 2017.
[6]ZHOU D, RANDALL C A, WANG H, et al. Microwave dielectric properties trends in a solid solution (Bi1–xLnx)2Mo2O9 (Ln = La, Nd, 0.0≤x≤0.2) system[J]. J Am Ceram Soc, 2009, 92(12): 2931–2936.
[7]WANG S F, WANG Y R, HSU Y F, et al. Ultra-low-fire Te2(Mo1–xWx)O7 ceramics: microstructure and microwave dielectric properties[J]. J Am Ceram Soc, 2010, 93(12): 4071–4074.
[8]VALANT M, SUVOROV D. Processing and dielectric properties of sillenite compounds Bi12MO20–delta(M=Si, Ge, Ti, Pb, Mn, B1/2P1/2)[J]. J Am Ceram Soc, 2010, 84(12): 2900–2904.
[9]ZHOU D, RANDALL C A, WANG H, et al. Microwave dielectric ceramics in Li2O–Bi2O3–MoO3 system with ultra–low sintering temperatures[J]. J Am Ceram Soc, 2010, 93(4): 1096–1100.
[10]ZHOU D, RANDALL C A, WANG H, et al. Ultra-low firing high-k scheelite structures based on [(Li0.5Bi0.5)xBi1–x][MoxV1–x]O4 microwave dielectric ceramics[J]. J Am Ceram Soc, 2010, 93(8): 2147–2150.
[11]ZHOU D, WANG H, PANG L X, et al. Bi2O3–MoO3 binary system: an alternative ultralow sintering temperature microwave dielectric[J]. J Am Ceram Soc, 2010, 92(10): 2242–2246.
[12]ZHOU D, PANG L X, GUO J, et al. Phase evolution, phase transition, raman spectra, infrared spectra, and microwave dielectric properties of low temperature firing (K0.5xBi1–0.5x)(MoxV1–x)O4 ceramics with scheelite related structure[J]. Inorg Chem, 2011, 50(24): 12733–8.
[13]ZHOU D, PANG L X, WANG H, et al. Phase transition, raman spectra, infrared spectra, band gap and microwave dielectric properties of low temperature firing (Na0.5xBi1–0.5x)(MoxV1–x)O4 solid solution ceramics with scheelite structures[J]. J Mater Chem, 2011, 21(45): 18412–18420.
[14]ZHOU D, RANDALL C A, PANG L X, et al. Microwave dielectric properties of (ABi)1/2MoO4 (A=Li, Na, K, Rb, Ag) type ceramics with ultra–low firing temperatures[J]. Mater Chem Phys, 2011, 129(3): 688–692.
[15]ZHOU D, RANDALL C A, PANG L X, et al. Microwave dielectric properties of Li2(M2+)2Mo3O12 and Li3(M3+)Mo3O12 (M = Zn, Ca, Al, and In) lyonsite-related-type ceramics with ultra-low sintering temperatures[J]. J Am Ceram Soc, 2011, 94(3): 802–805.
[16]ZHOU D, GUO J, YAO X, et al. Phase evolution and microwave dielectric properties of (Li0.5Bi0.5)(W1–xMox)O4 (0.0≤x≤1.0) ceramics with ultra-low sintering temperatures[J]. Funct Mater Lett, 2012, 5(4): 57.
[17]LEE Y C, CHIU J D, YU H C. Effects of Nb2O5 doping on the microwave dielectric properties and microstructures of Bi2Mo2O9 ceramics[J]. J Am Ceram Soc, 2013, 96(5): 1477–1482.
[18]PANG L X, ZHOU D, CAI C L, et al. Infrared spectroscopy and microwave dielectric properties of ultra-low temperature firing (K0.5La0.5)MoO4 ceramics[J]. Mater Lett, 2013, 92(2): 36–38.
[19]SURJITH A, SURESH E K, FREDDY S, et al. Microwave dielectric properties of low temperature sinterable Re2Mo4O15 (Re = Nd, Sm) ceramics for LTCC applications[J]. J Mater Sci: Mater Electron, 2013, 24(6): 1818–1822.
[20]GUO J, RANDALL C, ZHANG G Q, et al. Synthesis, structure, and characterization of new low-firing microwave dielectric ceramics: (Ca1–3xBi2x)MoO4[J]. J Mater Chem C, 2014, 2(35): 7364–7372.
[21]GUO J, ZHOU D, ZOU S L, et al. Microwave dielectric ceramics Li2MO4–TiO2 (M = Mo, W) with low sintering temperatures[J]. J Am Ceram Soc, 2014, 97(6): 1819–1822.
[22]LIAO Q, WANG Y, FENG J, et al. Ultra-low fire glass-free Li3FeMo3O12 microwave dielectric ceramics[J]. J Am Ceram Soc, 2014, 97(8): 2394–2396.
[23]XI H H, DI Z, HE B, et al. Microwave dielectric properties of scheelite structured PbMoO4 ceramic with ultralow sintering temperature[J]. Inorg Chem, 2014, 97(5): 1375–1378.
[24]XIE H, XI H, LI F, et al. Microwave dielectric properties of Pb2MoO5 ceramic with ultra-low sintering temperature[J]. J Eur Ceram Soc, 2014, 34(15): 4089–4093.
[25]ZHANG G Q, GUO J, HE L, et al. Preparation and microwave dielectric properties of ultra-low temperature sintering ceramics in K2O–MoO3 binary system[J]. J Am Ceram Soc, 2014, 97(1): 241–245.
[26]ZHOU D, PANG L X, QI Z M. Novel ultra-low temperature co-fired microwave dielectric ceramic at 400 degrees and its chemical compatibility with base metal[J]. Sci Rep, 2014, 4(4): 5980.
[27]ZHOU D, LI W B, GUO J, et al. Structure, phase evolution, and microwave dielectric properties of (Ag0.5Bi0.5)(Mo0.5W0.5)O4 ceramic with ultralow sintering temperature[J]. Inorg Chem, 2014, 53(11): 5712.
[28]ZHOU D, LI W B, PANG L X, et al. Sintering behavior and dielectric properties of ultra-low temperature fired silver molybdate ceramics[J]. J Am Ceram Soc, 2014, 97(11): 3597–3601.
[29]ZHOU D, PANG L X, QI Z M. Crystal structure and microwave dielectric behaviors of ultra-low-temperature fired x(Ag0.5Bi0.5)MoO4–(1–x)BiVO4 (0.0≤x≤1.0) solid solution with scheelite structure[J]. Inorg Chem, 2014, 53(17): 9222–9227.
[30]KHRI H, TEIRIKANGAS M, JUUTI J, et al. Dielectric properties of lithium molybdate ceramic fabricated at room temperature[J]. J Am Ceram Soc, 2015, 97(11): 3378–3379.
[31]KHRI H, TEIRIKANGAS M, JUUTI J, et al. Improvements and modifications to room-temperature fabrication method for dielectric Li2MoO4 ceramics[J]. J Am Ceram Soc, 2015, 98(3): 687–689.
[32]PANG L X, ZHOU D, GUO J, et al. Microwave dielectric properties of (Li0.5Ln0.5)MoO4 (Ln = Nd, Er, Gd, Y, Yb, Sm, and Ce) ceramics[J]. J Am Ceram Soc, 2015, 98(1): 130–135.
[33]ZHAI X L, ZHENG X, XI H H, et al. Microwave dielectric properties of LiKSm2(MoO4)4 ceramics with ultralow sintering temperatures[J]. J Am Ceram Soc, 2015, 98(9): 2716–2719.
[34]ZHANG G Q, WANG H, GUO J, et al. Ultra-low sintering temperature microwave dielectric ceramics based on Na2O–MoO3 binary system[J]. J Am Ceram Soc, 2015, 98(2): 528–533.
[35]JOSEPH N, VARGHESE J, SIPONKOSKI T, et al. Glass-free CuMoO4 ceramic with excellent dielectric and thermal properties for ultralow temperature cofired ceramic applications[J]. ACS Sustain Chem Eng, 2016, 4(10): 5632–5639.
[36]DHANYA J, BASILUDDEEN A, RATHEESH R. Synthesis of ultra low temperature sinterable Na2Zn5(MoO4)6 ceramics and the effect of microstructure on microwave dielectric properties[J]. Scripta Mater, 2017, 132(15): 1–4.
[37]ZHANG G Q, GUO J, WANG H. Ultra-low temperature sintering microwave dielectric ceramics based on Ag2O–MoO3 binary system[J]. J Am Ceram Soc, 2017, 100(6): 2604–2611.
[38]LIU W, WANG H, ZHOU D, et al. Dielectric properties of low-firing Bi2Mo2O9 thick films screen printed on al foils and alumina substrates[J]. J Am Ceram Soc, 2010, 93(8): 2202–2206.
[39]UDOVIC M, VALANT M, SUVOROV D. Dielectric characterisation of ceramics from the TiO2–TeO2 system[J]. J Eur Ceram Soc, 2001, 21(10/11): 1735–1738.
[40]VALANT M, SUVOROV D. Glass-free low-temperature cofired ceramics: calcium germanates, silicates and tellurates[J]. J Eur Ceram Soc, 2004, 24(6): 1715–1719.
[41]KWON D K, LANAGAN M, SHROUT T. Synthesis of BaTiTe3O9 ceramics for LTCC application and its dielectric properties[J]. J Ceram Soc Jpn, 2005, 113(1315): 216–219.
[42]KWON D K, LANAGAN M T, SHROUT T R. Microwave dielectric properties and low-temperature cofiring of BaTe4O9 with aluminum metal electrode[J]. J Am Ceram Soc, 2005, 88(12): 3419–3422.
[43]KWON D K, LANAGAN M T, SHROUT T R. Microwave dielectric properties of BaO–TeO2 binary compounds[J]. Mater Lett, 2007, 61(8/9): 1827–1831.
[44]SUBODH G, SEBASTIAN M T. Glass-free Zn2Te3O8 microwave ceramic for LTCC applications[J]. J Am Ceram Soc, 2007, 90(7): 2266–2268.
[45]SUBODH G, RATHEESH R., JACOB M V, et al. Microwave dielectric properties and vibrational spectroscopic analysis of MgTe2O5 ceramics[J]. J Mater Res, 2008, 23(6): 1551–1556.
[46]SUBODH G, SEBASTIAN M T. Microwave dielectric properties of ATe3O8 (A = Sn, Zr) ceramics[J]. Jpn J Appl Phys, 2008, 47(10): 7943–7946.
[47]Honkamo J, Jantunen H, Subodh G, et al. Tape casting and dielectric properties of Zn2Te3O8-based ceramics with an ultra-low sintering temperature[J]. Int J Appl Ceram Tec, 2009, 6(4): 531–536.
[48]JIAO X, ZHONG C, ZHANG S, et al. Microwave dielectric properties of BaO–TiO2–TeO2 ternary system[J]. J Mater Sci, 2010, 45(12): 3331–3335.
[49]UDOVIC M, VALANT M, SUVOROV D. Phase formation and dielectric characterization of the Bi2O3–TeO2 system prepared in an oxygen atmosphere[J]. J Am Ceram Soc, 2010, 87(4): 591–597.
[50]WANG S F, HUANG C Y, LIU Y L. Effects of CaTiO3 and SrTiO3 additions on the microstructure and microwave dielectric properties of ultra-low-fire TeO2 ceramics[J]. J Am Ceram Soc, 2010, 93(10): 3272–3277.
[51]WANG S F, WANG Y R, HSU Y F, et al. Densification, microstructure and microwave dielectric properties of ultra-low fire BaTe4O9–TiTe3O8 ceramic composites[J]. J Eur Ceram Soc, 2010, 30(7): 1737–1741.
[52]WANG S F, HSU Y F, WANG Y R, et al. Ultra-low-fire Zn2Te3O8–TiTe3O8 ceramic composites[J]. J Am Ceram Soc, 2011, 94(3): 812–816.
[53]CAO X, GAO F, HU G, et al. The phase transitions and dielectric properties of low temperature sintered ZnNb2O6–Zn3Nb2O8–TiTe3O8 microwave ceramics[J]. J Mater Sci: Mater Electron, 2013, 24(8): 3021–3028.
[54]SCHILEO G, DIAS A, MOREIRA R L, et al. Structure and microwave dielectric properties of low firing Bi2Te2W3O16 ceramics[J]. J Am Ceram Soc, 2014, 97(4): 1096–1102.
[55]MAEDA M, YAMAMURA T, IKEDA T. Dielectric characteristics of several complex oxide ceramics at microwave frequencies ferroelectric materials[J]. Jpn J Appl Phys, 1987, 26(S2): 76.
[56]UMEMURA R, OGAWA H, OHSATO H, et al. Microwave dielectric properties of low-temperature sintered Mg3(VO4)2 ceramic[J]. J Eur Ceram Soc, 2005, 25(12): 2865–2870.
[57]UMEMURA R, OGAWA H, YOKOI A, et al. Low-temperature sintering-microwave dielectric property relations in Ba3(VO4)2 ceramic[J]. J Alloy Compd, 2006, 424(1): 388–393.
[58]JOUNG M R, KIM J S, SONG M E, et al. Formation process and microwave dielectric properties of the R2V2O7 (R = Ba, Sr, and Ca) ceramics[J]. J Am Ceram Soc, 2009, 92(12): 3092–3094.
[59]FANG L, XIANG F, SU C, et al. A novel low firing microwave dielectric ceramic NaCa2Mg2V3O12[J]. Ceram Int, 2013, 39(8): 9779–9783.
[60]SURESH E K, UNNIMAYA A N, SURJITH A, et al. New vanadium based Ba3MV4O15 (M=Ti and Zr) high Q ceramics for LTCC applications[J]. Ceram Int, 2013, 39(4): 3635–3639.
[61]YAO G G, LIU P, ZHANG H W. Novel series of low-firing microwave dielectric ceramics: Ca5A4(VO4)6 (A2+ = Mg, Zn)[J]. J Am Ceram Soc, 2013, 96(6): 1691–1693.
[62]FANG L, WEI Z, SU C, et al. Novel low-firing microwave dielectric ceramics: BaMV2O7 (M = Mg, Zn)[J]. Ceram Int, 2014, 40(10): 16835–16839.
[63]KALATHIL S E, NEELAKANTAN U A, RATHEESH R. Microwave dielectric properties of ultralow-temperature cofirable Ba3V4O13 ceramics[J]. J Am Ceram Soc, 2014, 2015(2): 305–310.
[64]ZHOU H, HE F, CHEN X, et al. Series of thermally stable Li1+2xMg4−xV3O12 ceramics: low temperature sintering characteristic, crystal structure and microwave dielectric properties[J]. J Mater Sci: Mater Electron, 2014, 25(3): 1480–1484.
[65]ZHOU H, MIAO Y, CHEN J, et al. Sintering characteristic, crystal structure and microwave dielectric properties of a novel thermally stable ultra-low-firing Na2BiMg2V3O12 ceramic[J]. J Mater Sci: Mater Electron, 2014, 25(6): 2470–2474.
[66]JIANG X, FANG L, XIANG H, et al. A novel low-firing microwave dielectric ceramic NaMg4V3O12 and its chemical compatibility with silver electrode[J]. Ceram Int, 2015, 41(10): 13878–13882.
[67]LI W B, XI H H, ZHOU D. Microwave dielectric properties of LiMVO4 (M = Mg, Zn) ceramics with low sintering temperatures[J]. Ceram Int, 2015, 41(7): 9063–9068.
[68]NEELAKANTAN U A, KALATHIL S E, RATHEESH R. Structure and microwave dielectric properties of ultralow-temperature cofirable BaV2O6 ceramics[J]. Eur J Inorg Chem, 2015, 2015(2): 305–310.
[69]YAO G G, HU X S, TIAN X L, et al. Low temperature sintering and microwave dielectric properties of LiMgVO4 ceramics[J]. J Mater Sci: Mater Electron, 2015, 26(3): 1795–1798.
[70]YAO G G, PEI C J, XU J G, et al. Microwave dielectric properties of CaV2O6 ceramics with low dielectric loss[J]. J Mater Sci: Mater Electron, 2015, 26(10): 7719–7722.
[71]PEI C J, YAO G G, REN Z Y. Microwave dielectric properties of BaV2O6 ceramics with ultra-low sintering temperature[J]. J Ceram Process Res, 2016, 17(7): 681–684.
[72]SURESH E K, PRASAD K, ARUN N S, et al. Synthesis and microwave dielectric properties of A16V18O61 (A = Ba, Sr and Ca) ceramics for LTCC applications[J]. J Electron Mater, 2016, 45(6): 2996–3002.
[73]XIANG H C, TANG Y, FANG L, et al. A novel ultra-low temperature cofired Na2BiZn2V3O12 ceramic and its chemical compatibility with metal electrodes[J]. J Mater Sci: Mater Electron, 2017, 28(2): 1508–1513.
[74]ZHOU H, CHEN X, FANG L, et al. Microwave dielectric properties of LiBiW2O8 ceramics with low sintering temperature[J]. J Am Ceram Soc, 2010, 93(12): 3976–3979.
[75]ZHOU D, RANDALL C A, PANG L X, et al. Microwave dielectric properties of Li2WO4 ceramic with ultra-low sintering temperature[J]. J Am Ceram Soc, 2011, 94(2): 348–350.
[76]ZHOU D, PANG L X, XIE H D, et al. Crystal structure and microwave dielectric properties of a novel ultra-low temperature fired (AgBi)0.5WO4 ceramic[J]. Eur J Inorg Chem, 2014, 2014(2): 296–301.
[77]FANG L, WEI Z, GUO H, et al. Phase composition and microwave dielectric properties of low-firing Li2A2W3O12 (A = Mg, Zn) ceramics[J]. J Mater Sci: Mater Electron, 2015, 26(8): 5892–5895.
[78]XIE H D, XI H H, CHEN C, et al. Microwave dielectric properties of two low temperature sintering ceramics in the PbO–WO3 binary system[J]. Ceram Int, 2015, 41(8): 10287–10292.
[79]OHASHI M, OGAWA H, KAN A, et al. Microwave dielectric properties of low-temperature sintered Li3AlB2O6 ceramic[J]. J Eur Ceram Soc, 2005, 25(12): 2877–2881.
[80]CHANG S Y, PAI H F, TSENG C F, et al. Microwave dielectric properties of ultra-low temperature fired Li3BO3 ceramics[J]. J Alloy Compd, 2017, 698: 814–818.
[81]PANG L X, ZHOU D, LI W B, et al. High quality microwave dielectric ceramic sintered at extreme-low temperature below 200° and co-firing with base metal[J]. J Eur Ceram Soc, 2017, 37(9): 3073–3077.
[82]CHEN X, ZHANG W, ZALINSKA B, et al. Low sintering temperature microwave dielectric ceramics and composites based on Bi2O3–B2O3[J]. J Am Ceram Soc, 2012, 95(10): 3207–3213.
[83]WU J M, HUANG H L. Microwave properties of zinc, barium and lead borosilicate glasses[J]. J Non–Cryst Solids, 1999, 260(1/2): 116–124.
[84]JANTUNEN H, RAUTIOAHO R, UUSIM KI A, et al. Compositions of MgTiO3–CaTiO3 ceramic with two borosilicate glasses for LTCC technology[J]. J Eur Ceram Soc, 2000, 20(14/15): 2331–2336.
[85]WANG S H, ZHOU H P, LUO L H, et al. Low dielectric and high frequency glass-ceramic in the system CaO–B2O3–SiO2[J]. Key Eng Mater, 2002, 224: 31–32.
[86]CHEN C S, CHOU C C, SHIH W J, et al. Microwave dielectric properties of glass–ceramic composites for low temperature co–firable ceramics[J]. Mater Chem Phys, 2003, 79(2/3): 129–134.
[87]CHIANG C C, WANG S F, WANG Y R, et al. Characterizations of CaO–B2O3–SiO2 glass-ceramics: thermal and electrical properties[J]. J Alloy Compd, 2008, 461(1/2): 612–616.
[88]CHIANG C C, WANG S F, WANG Y R, et al. Densification and microwave dielectric properties of CaO–B2O3–SiO2 system glass–ceramics[J]. Mat Sci Eng B, 2008, 34(3): 599–604.
[89]JEAN J H, FANG Y C, DAI S X, et al. Devitrification kinetics and mechanism of K2O–CaO–SrO–BaO–B2O3–SiO2 glass-ceramic[J]. J Am Ceram Soc, 2010, 84(6): 1354–1360.
[90]KIM K S, SANG H S, KIM S, et al. Microwave dielectric properties of ceramic/glass composites with bismuth-zinc borosilicate glass[J]. J Ceram Process Res, 2010, 11(1): 47–51.
[91]LO C L, DUH J G, CHIOU B S, et al. Low-temperature sintering and microwave dielectric properties of anorthite-based glass-ceramics[J]. J Am Ceram Soc, 2010, 85(9): 2230–2235.
[92]WANG S F, WANG Y R, HSU Y F, et al. Densification and microwave dielectric behaviors of CaO–B2O3–SiO2 glass-ceramics prepared from a binary glass composite[J]. J Alloy Compd, 2010, 498(2): 211–216.
[93]YU H, JU K, WANG K. A novel glass-ceramic with ultra-low sintering temperature for LTCC application[J]. J Am Ceram Soc, 2014, 97(3): 704–707.
[94]CHEN M Y, JUUTI J, HSI C S, et al. Dielectric BaTiO3–BBSZ glass ceramic composition with ultra-low sintering temperature[J]. J Eur Ceram Soc, 2015, 35(1): 139–144.
[95]CHEN M Y, JUUTI J, HSI C S, et al. Dielectric properties of ultra-low sintering temperature Al2O3–BBSZ glass composite[J]. J Am Ceram Soc, 2015, 98(4): 1133–1136.
[96]周迪. 新型铋基低温烧结微波介质陶瓷研究[D]. 西安: 西安交通大学, 2009.
ZHOU Di. Study on the new bismuth-based microwave dielectric ceramics with low sintering temperatures (in Chinese, dissertation). Xi’an: Xi’an Jiaotong University, 2009.
[97]杨辉, 张启龙, 王家邦, 等. 微波介质陶瓷及器件研究进展[J]. 硅酸盐学报, 2003, 31(10): 965–973.
YANG Hui, ZHANG Qilong, WANG Jiabang, et al. J Chin Ceram Soc, 2003, 31(10): 965–973.
[98]陈凯, 沈波, 姚熹, 等. Bi基微波介质材料研究进展[J]. 硅酸盐学报, 2006, 34(11): 1374–1381.
CHEN Kai, SHEN Bo, YAO Xi, et al. J Chin Ceram Soc, 2006, 34(11): 1374–1381.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com