首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
化学包覆法制备Ho3+掺杂钛酸钡基X8R细晶陶瓷
作者:黄咏安 路标 唐振华 李丹丹 姚英邦 陶涛 梁波 鲁圣国 
单位:广东省智能材料和能量转化器件工程技术研究中心 广东省软物质重点实验室 广东工业大学材料与能源学院 广州 510006 
关键词:化学包覆法 氧化钬 钛酸钡 细晶陶瓷 “核–壳”结构 
分类号:TQ174.1
出版年,卷(期):页码:2017,45(9):1265-1270
DOI:10.14062/j.issn.0454-5648.2017.09.06
摘要:

采用化学包覆法将Ho2O3包覆在纳米级钛酸钡粉体表面,通过烧结将Ho3+扩散到钛酸钡晶粒中,调节其介电性能,研究了不同Ho3+掺杂量对BaTiO3基陶瓷相组成、微观结构和介电性能的影响。X射线衍射和扫描电子显微镜分析结果表明:Ho3+改性陶瓷样品均为赝立方相,Ho3+的加入能抑制晶粒生长,改善陶瓷微观结构,有利于制备均匀的细晶陶瓷。透射电子显微镜观察显示,包覆层的厚度约为2 nm,包覆Ho2O3有助于陶瓷烧结过程中形成“核–壳”结构晶粒,能显著改善钛酸钡基陶瓷的介电温度稳定性,提高绝缘电阻。当Ho3+掺杂量为2.0%时,陶瓷的相对介电常数为1 612,ΔC/C(–55~150 ℃)<±15%,满足EIA X8R电容器的温度特性。

 

 Ho2O3 was coated on the surface of nanosized barium titanate powder by a chemical coating method. Ho3+ ions were diffused into BaTiO3 grains in a ceramic sintering process to adjust the dielectric properties. The effect of doped Ho3+ ionic content on the composition, microstructure and dielectric constant of ceramics at various temperatures were investigated. Based on the results by X-ray diffraction and scanning electron microscopy, Ho3+ ions-doped ceramics show a pseudo-cubic crystalline phase. The addition of Ho3+ ions can inhibit the grain growth, modify the microstructure, and form the homogeneous fine-grain structure. The results by transmisson electron microscopy indicate that the thickness of the coating layer is approximately 2 nm. The coating of Ho2O3 favors the formation of the core–shell grain structure during sintering, thus improving the temperature stability of dielectric constant, and enhancing the insulative resistance. The dielectric constant of is 1 612, ΔC/C (–50~150 ℃) <±15% at the Ho3+ ionic concentration of 2%, which meet the requirements of EIA X8R for the temperature-dependent ceramic capacitors.

 
基金项目:
国家自然科学基金委–广东省联合基金(U1501246);国家自然科学基金(51372042);广东省自然科学基金重大基础研究培育项目(2015A030308004)。
作者简介:
黄咏安(1991—),男,硕士研究生。
参考文献:

 [1] 李玲霞, 郭锐, 王洪茹. 多种添加剂对高压X8R介质材料的改性研究[J]. 无机材料学报, 2007, 22(4): 711–714. 

LI Lingxia, GUO Rui, WANG Hongru. J Inorg Mater(in Chinese), 2007, 22(4): 711–714.
[2] SONG Y H, HWANG J H, HAN Y H. Effects of Y2O3 on temperature stability of acceptor-doped BaTiO3[J]. Jpn J Appl Phys, 2005, 44(3): 1310–1313.
[3] HWANG J H, CHOI S K, HAN Y H. Dielectric properties of BaTiO3 codoped with Er2O3 and MgO[J]. Jpn J Appl Phys, 2001, 40(8): 4952–4955. 
[4] CHANG C Y, WANG W N, HUANG C Y. Effect of MgO and Y2O3 doping on the formation of core–shell structure in BaTiO3 ceramics[J]. J Am Ceram Soc, 2013, 96(8): 2570–2576.
[5] PARK J S, HAN Y H. Effects of MgO coating on microstructure and dielectric properties of BaTiO3[J]. J Eur Ceram Soc, 2007, 27(2): 1077–1082. 
[6] KISHI H, OKINO Y, HONDA M, et al. The effect of MgO and rare-earth oxide on formation behavior of core–shell structure in BaTiO3[J]. Jpn J Appl Phys, 1997, 36(9): 5954–5957.
[7] TIAN Zhibin, WANG Xiaohui, ZHANG Yichi, et al. Formation of core–shell structure in ultrafine-grained BaTiO3-based ceramics through nanodopant method[J]. J Am Ceram Soc, 2010, 93(1): 171–175.
[8] WANG Yan, CUI Bin, LIU Yu, et al. Fabrication of submicron La2O3-coated BaTiO3 particles and fine-grained ceramics with temperature-stable dielectric properties[J]. Scripta Mater, 2014, s 90–91(16): 49–52.
[9] BASSANO A, BUSCAGLIA V, SENNOUR M, et al. Nanocrystalline oxide (Y2O3, Dy2O3, ZrO2, NiO) coatings on BaTiO3 submicron particles by precipitation[J]. J Nanopart Res, 2010, 12(2): 623–633. 
[10] BUSCAGLIA M T, VIVIANI M, ZHAO Z, et al. Synthesis of BaTiO3 core−shell particles and fabrication of dielectric ceramics with local graded structure[J]. Chem Mater, 2006, 18(17): 4002–4010.
[11] ZHANG Yichi, WANG Xiaohui, Kim J Y, et al. High performance BaTiO3-based BME–MLCC nanopowder prepared by aqueous chemical coating method[J]. J Am Ceram Soc, 2012, 95(5): 1628–1633.
[12] LI Tao, LI Longtu, ZHAO Jianqiang, et al. Modulation effect of Mn2+ on dielectric properties of BaTiO3-based X7R materials[J]. Mater Lett, 2000, 44(1): 1–5.
[13] YAO Guofeng, WANG Xiaohui, LI Longtu. Study on occupation behavior of Y2O3 in X8R nonreducible BaTiO3-based dielectric ceramics[J]. Jpn J Appl Phys, 2011, 50(12R): 121501.
[14] KIM C H, PARK K J, YOON Y J, et al. Role of yttrium and magnesium in the formation of core–shell structure of BaTiO3 grains in MLCC[J]. J Eur Ceram Soc, 2008, 28(6): 1213–1219.
[15] ATKIN R B, FULRATH R M. Point defects and sintering of lead zirconate–titanate[J]. J Am Ceram Soc, 2006, 54(5): 265–270.
[16] ZHANG Baolin, WU Shunhua. Effect of calcinating temperature and Mn doping on dielectric properties of temperature–stable BaTiO3-based X8R ceramics[J]. Int J Appl Ceram Technol, 2013, 10(s1): E57–E63.
[17] YAO Guofeng, WANG Xiaohui, ZHANG Yichi, et al. Nb-modified 0.9BaTiO3–0.1(Bi0.5Na0.5)TiO3 ceramics for X9R high–temperature dielectrics application prepared by coating method[J]. J Am Ceram Soc, 2012, 95(11): 3525–3531.
[18] PARK Y, KIM Y H, KIM H G. The effect of grain size on dielectric behavior of BaTiO3 based X7R materials[J]. Mater Lett, 1996, 28(1/3): 101–106.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com