首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
BCZT无铅压电陶瓷的水热法制备及其性能
作者:卢晓羽1 方必军1 姜彦1 丁建宁1 赵祥永2 罗豪甦3 
单位:1. 常州大学材料科学与工程学院 江苏省光伏科学与工程协同创新中心 江苏 常州 213164 2. 上海师范大学光电材料与器件重点实验室 上海师范大学物理系 上海 200234 3. 中国科学院无机功能材料与器件重点实验室 上海 201800 
关键词:水热反应法 锆钛酸钡钙 钙钛矿结构 电学性能 
分类号:TM282
出版年,卷(期):页码:2017,45(9):1280-1287
DOI:10.14062/j.issn.0454-5648.2017.09.08
摘要:

 通过水热反应法低温烧结制备Ba0.85Ca0.15Zr0.1Ti0.9O3(BCZT)无铅压电陶瓷,研究了烧结温度和时间对BCZT陶瓷的晶体结构和电学性能的影响。与固相反应法相比,由于水热法制备的BCZT前驱体的高活性,可以低温烧结制备BCZT陶瓷,低温烧结制备的BCZT陶瓷呈现纯钙钛矿结构、较为均匀的小晶粒微观形貌(小于10 μm)和更高的致密度。通过水热法制备的BCZT陶瓷呈现优良的电学性能,其介电响应特征接近正常铁电体、又呈现一定的频率色散现象。1 340 ℃烧结18 h制备的BCZT陶瓷的剩余极化强度最大,Pr=6.84 μC/cm2。1 320 ℃烧结18 h制备的BCZT陶瓷压电性能最佳,d33达到最大值213 pC/N。

 

 Ba0.85Ca0.15Zr0.1Ti0.9O3 (BCZT) lead-free piezoelectric ceramics were prepared via a hydrothermal method and low-temperature sintering. The effects of sintering temperature and time on the crystal structure and electrical properties of the BCZT ceramics were investigated. Compared to a solid-state reaction method, the BCZT ceramics can be synthesized at low sintering temperatures due to the higher sintering capability of the BCZT precursor prepared by the hydrothermal method. The low-temperature sintered BCZT ceramics exhibit a pure perovskite structure, rather homogenous microstructural morphology, smaller grain sizes (i.e., <10 μm), and higher relative density. The BCZT ceramics prepared via the hydrothermal method exhibit excellent electrical properties, in which their dielectric response behavior approaches normal ferroelectrics, and presents a slight dielectric frequency dispersion as well. The BCZT ceramic sintered at 1 340 ℃ for 18 h presents the maximum remnant polarization (i.e., Pr=6.84 μC/cm2). The BCZT ceramic sintered at 1 320 ℃ for 18 h exhibits the maximum piezoelectric constant (i.e., 213 pC/N).

基金项目:
国家自然科学基金(51577015);江苏省产学研合作前瞻性联合研究项目(BY2015027-220);江苏高校优势学科建设工程资助。
作者简介:
卢晓羽(1992—),女,硕士研究生。
参考文献:

 [1]GUO R, CROSS L E, PARK S E, et al. Origin of the high piezoelectric response in PbZr1–xTixO3[J]. Phys Rev Lett, 2000, 84(23): 5423–5426.

[2]CHEN L, LIANG R, WANG G, et al. Poling induced dielectric anomalies in a PZT ceramic[J]. Ceram Int, 2013, 39(8): 8941–8940.4.
[3]LIU C L, PAN S S, CHEN Z H, et al. Phase diagram of ternary Pb(Mg1/3Nb2/3)O3–PbZrO3–PbTiO3 ferroelectric ceramics prepared via a B-site oxide mixing route[J]. Ferroelectrics, 2015, 482(1): 11–21.
[4]RÖDEL J, JO W, SEIFERT K T P, et al. Perspective on the development of lead-free piezoceramics[J]. J Am Ceram Soc, 2009, 92(6): 1153–1177.
[5]LI Y, MOON K S, WONG C P. Electronics without lead[J]. Science, 2005, 308(5727): 1419–1420.
[6]WADA S, TAKEDA K, TSURUMI T, et al. Preparation of [110] grain oriented barium titanate ceramics by templated grain growth method and their piezoelectric properties[J]. Jpn J Appl Phys, 2007, 46(46): 372–376.
[7]SHEN Z J, BING L N, PENG H Y, et al. Influence of Ge and Si doping on the microstructure and dielectric properties of barium titanate ceramics[J]. Appl Mech Mater, 2013, 464: 44–49.
[8]郭朋彦, 张瑞朱, 郭雯鹏, 等. W、Zr共同掺杂对铌酸钾钠基无铅压电陶瓷的影响[J]. 硅酸盐学报, 2016, 44(9): 1265–1269.
GUO Pengyan, ZHANG Ruizhu, GUO Wenpeng, et al. J Chin Ceram Soc, 2016, 44(9): 1265–1269.
[9]ZHAO Y J, YUAN X Y, ZHAO Y Z, et al. Improved piezoelectricity and luminescence behavior in Er2O3 doped (K, Na)NbO3 ceramics[J]. Mater Lett, 2016, 162: 226–229.
[10]ZUO R Z, FANG X S, YE C. Phase structures and electrical properties of new lead-free (Na0.5K0.5)NbO3–(Bi0.5Na0.5)TiO3 ceramics[J]. Appl Phys Lett, 2007, 90(9): 092900.4
[11]MURYA D, ZHOU Y, WANG Y J, et al. Giant strain with ultra-low hysteresis and high temperature stability in grain oriented lead-free K0.5Bi0.5TiO3–BaTiO3–Na0.5Bi0.5TiO3 piezoelectric materials[J]. Sci Rep, 2015, 5: 8595.
[12]LIU W F, REN X B. Large piezoelectric effect in Pb-free ceramics[J]. Phys Rev Lett, 2009, 103(25): 257602.
[13]JIANG X P, LI L, CHEN C, et al. Effects of Mn-doping on the properties of (Ba0.92Ca0.08)(Ti0.95Zr0.05)O3 lead-free ceramics[J]. J Alloy Compd, 2013, 574(3): 88–91. 
[14]ACOSTA M, NOVAK N, JO W, et al. Relationship between electromechanical properties and phase diagram in the Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 lead-free piezoceramic[J]. Acta Mater, 2014, 80: 48–55.
[15]LIU X, CHEN Z H, FANG B J, et al. Enhancing piezoelectric properties of BCZT ceramics by Sr and Sn co-doping[J]. J Alloy Compd, 2015, 640: 128–133.
[16]FANG B J, WANG W W, DING J N, et al. Preparation and electrical properties of pseudoternary BaTiO3–CaTiO3–BaZrO3 lead free piezoelectric ceramics[J]. Adv Appl Ceram, 2013, 112(5): 257–262.
[17]SU S, ZUO R Z, LU S B, et al. Poling dependence and stability of piezoelectric properties of Ba(Zr0.2Ti0.8)O3–(Ba0.7Ca0.3)TiO3 ceramics with huge piezoelectric coefficients[J]. Curr Appl Phys, 2011, 11(3): S120–S123. 
[18]CUI Y, LIU X, JIANG M, et al. Lead-free (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3–CeO2 ceramics with high piezoelectric coefficient obtained by low-temperature sintering  Ceram Int, 2012, 24(38): 4761–4760.4.
[19]SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Cryst, 1976, A32: 751–767.
[20]TANG X G, WANG X X, CHEW K H, et al. Relaxor behavior of  (Ba, Sr)(Zr, Ti)O3 ferroelectric ceramics[J]. Solid State Comm, 2005, 136(2): 89–93.
[21]LIU X, WU D, CHEN Z, et al. Ferroelectric, dielectric and pyroelectric properties of Sr and Sn co-doped BCZT lead free ceramics[J]. Adv Appl Ceram, 2015, 114(8): 436–441.
[22]XU Q, ZHANG X F, HUANG Y H, et al. Effect of sintering temperature on structure and nonlinear dielectric properties of Ba0.6Sr0.4TiO3 ceramics prepared by the citrate method[J]. J Phys Chem Solid, 2010, 71(11): 1550–1556.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com