首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
掺杂稀土铈对高炉渣陶瓷远红外性能及物理性能的影响
作者:张珂玮1  怡2 杨元意4  兵1 廖咏康3 杨为中1 
单位:1. 四川大学材料科学与工程学院 成都 640064 2. 四川大学化学工程学院 成都 610065 3. 四川白塔新联兴陶瓷集团有限责任公司 四川 威远 642450 4. 四川建筑职业学院材料工程系 四川 德阳 618000 
关键词:高炉渣 稀土 红外辐射 物理性能 
分类号:TU523
出版年,卷(期):页码:2017,45(9):1310-1315
DOI:10.14062/j.issn.0454-5648.2017.09.12
摘要:

 以攀西地区高炉废渣为原料,采用陶瓷烧结工艺制备了不同稀土Ce掺杂量的高炉渣远红外陶瓷。研究了高炉渣陶瓷中稀土Ce的最佳掺入量以及稀土的掺入对陶瓷红外辐射性能的影响机理,考察了稀土的掺入对于高炉渣陶瓷线收缩率、吸水率及抗折强度的影响。采用X射线衍射与扫描电子显微镜研究了样品的晶相组成与显微结构,采用Fourier红外吸收光谱及发射光谱研究了样品红外吸收及发射性能。结果表明:陶瓷红外发射率最高达0.91,样品的抗折强度最高达38.1 MPa。高炉渣远红外陶瓷不仅具备高的远红外辐射能力,而且拥有良好的物理性能。

 

 A series of far-infrared ceramics were prepared by a sintering process with blast furnace slags (Pan-xi region, China) as raw material with Ce as a dopant. The influence of rare earth element Ce on the far-infrared properties and mechanical properties (i.e., linear shrinkage, water absorption and bending strength) of blast furnace slags ceramics was investigated, and the optional Ce doping contents was determined. The phase composition and microstructure were characterized by X-ray diffraction and scanning electron microscopy, respectively. The far-infrared emission and absorption properties of samples were determined via the Fourier transform infrared spectroscopy. The results indicate that the maximum far-infrared emissivity of as-prepared samples is 0.91, and its bending strength is up to 38.1 MPa. Therefore, the developed blast furnace slags ceramics have the excellent ability of far-infrared radiation and mechanical properties.

 
基金项目:
四川省科技支持计划(2015GZ0175)。
作者简介:
张珂玮(1993—),男,硕士研究生。
参考文献:

 [1]LIU Jie, MENG Junping, LIANG Jinsheng, et al. Effect of far infrared radiation ceramics containing rare earth additives on surface tension of water[J]. J Rare Earth, 2014, 32(9): 890–894.

[2]ALDARTSOGT D, YAMASHITA K Y, SHINE O D. The Ceramics radiating far infrared ray energy (rhyolite) promote the formation of bone[J]. J Hard Tissue Biol, 2014, 23(4): 423–434.
[3]王峰, 钱学强, 李小伟, 等. 高红外辐射陶瓷材料的研究进展[J]. 硅酸盐通报, 2015, 34(1): 143–155.
WANG Feng, QIAN Xueqiang, LI Xiaowei, et al. Bull Chin Ceram Soc (in Chinese), 2015, 34(1): 143–155.
[4]张贤明, 曾亚, 陈凌, 等. 高炉钛渣综合利用研究现状及展望[J]. 环境工程, 2015, 33(12): 100–104.
ZHANG Xianming, ZENG Ya, CHEN Ling, et al. Environ Eng (in Chinese), 2015, 33(12): 100–104.
[5]LI Hongyi, WANG Kang, HUA Weihao, et al. Selective leaching of vanadium in calcification-roasted vanadium slag by ammonium carbonate[J]. Hydrometallurgy, 2015, 160: 18–25.
[6]WANG Shuming, KUANG Fenghua, YAN Qingzhi, et al. Crystallization and infrared radiation properties of iron ion doped cordierite glass-ceramics[J]. J Alloy Compd, 2011, 509(509): 2819–2823. 
[7]CHANG Meiqi, SHENG Ye, SONG Yanhua, et al. Luminescence properties and Judd–Ofelt analysis of TiO2:Eu3+ nanofibers via polymer-based electrospinning method[J]. RSC Adv, 2016, 6(57): 52113–52121. 
[8]ZHANG Ying, WEN Dijiang. Infrared emission properties of RE (RE=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, and Dy) and Mn co–doped Co0.6Zn0.4 Fe2O4, ferrites[J]. Mater Chem Phys, 2012, 131(3): 575–580.
[9]张英, 闻荻江. 稀土离子掺杂Co2O3–ZnO–NiO–Fe2O3陶瓷在特定波段的红外辐射性能[J]. 硅酸盐学报, 2008, 36(6): 743–747.
ZHANG Ying, WEN Dijiang. J Chin Ceram Soc, 2008, 36(6): 743–747.
[10]LIU Jie, MENG Junping, LIANG Jinsheng, et al. Effect of rare earth Ce on the far infrared radiation property of iron ore tailings ceramics[J]. Mater Res Bull, 2015, 66: 26–31.
[11]ZHANG Kewei, DENG Yi, YANG Yuanyi, et al. Effect of lanthanum doping on the far-infrared emission property of vanadium-titanium slags ceramic[J]. RSC Adv, 2017, 7(22): 13509–13516.
[12]赵立华, 苍大强, 刘璞, 等. CaO–MgO–SiO2体系钢渣陶瓷材料制备与微观结构分析[J]. 工程科学学报, 2011, 33(8): 995–1000.
ZHAO Lihua, CHANG Daqiang, LIU Pu, et al. J ENG SCI (in Chinese), 2011, 33(8): 995–1000.
[13]王峰, 布丛郝, 叶建克, 等. (Ca,Fe)共掺铈酸镧陶瓷的制备及红外辐射性能研究[J]. 无机材料学报, 2016, 31(2): 185–189.
WANG Feng, BU Conghao, YE Jianke, et al. J Inorg Mater (in Chinese), 2016, 31(2): 185–189.
[14]VIJAY S, VINEET K R, VENKATRAMU V, et al. Infrared emissions in MgSrAl10O17:Er3+ phosphor co-doped with Yb3+/Ba2+/Ca2+ obtained by solution combustion route[J]. J Lumin, 2013, 134(134): 396–400.
[15]OZTURK Z B, GULTEKIN E E. Preparation of ceramic wall tiling derived from blast furnace slag[J]. Ceram Int, 2015, 41(9): 12020–12026.
[16]DAS S K, KUMAR S, RAMACHANDRARAO P. Exploitation of iron ore tailing for the development of ceramic tiles[J]. Waste Manage, 2000, 20(8): 725–729. 
[17]胡丽华, 高建民, 马天, 等. 碳化硅木质陶瓷的显微结构及力学性能[J]. 硅酸盐学报, 2013, 41(6): 725–731.
HU Lihua, GAO Jianmin, MA Tian, et al. J Chin Ceram Soc, 2013, 41(6): 725–731.
[18]赵介南, 张宁, 周彬彬, 等. Al2O3基陶瓷材料的增韧研究进展[J]. 硅酸盐通报, 2016, 35(9): 2866–2871.
ZHAO Jienan, ZHANG Ning, ZHOU Binbin, et al. Bull Chin Ceram Soc (in Chinese), 2016, 35(9): 2866–2871.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com