首页期刊信息编委及顾问期刊发行联系方式使用帮助留言板ENGLISH
位置:首页 >> 正文
原位结合相对刚玉–尖晶石浇注料结构与性能的影响
作者:文泽宇1 李享成1 余珊珊2 陈平安1 朱伯铨1 
单位:1. 武汉科技大学 省部共建耐火材料与冶金国家重点实验室 武汉 430081 2. 武汉三工光电设备制造有限公司 武汉 430233 
关键词:浇注料 结构演化 尖晶石 六铝酸钙 
分类号:TQ175.1
出版年,卷(期):页码:2017,45(9):1347-1353
DOI:10.14062/j.issn.0454-5648.2017.09.18
摘要:

 以板状刚玉、电熔镁铝尖晶石、活性α-Al2O3微粉等为主要原料、铝酸钙水泥为结合剂,制备刚玉尖晶石浇注料。利用X射线衍射和扫描电子显微镜等研究了不同热处理温度下材料显微结构演化及对其性能的影响。结果表明:1 100 ℃烧成后,试样中尖晶石与氧化铝的固溶反应及八面体形貌原位尖晶石的生成使得试样有较高的中温力学性能。板片状形貌的六铝酸钙(CA6)的生成提高了1 600 ℃烧后试样的综合性能,试样的高温抗折强度提高近219%,达到24.18 MPa;3次热震后试样的常温抗压强度损失为15.5 MPa,强度保持率提升近14%,达到84.50%。板片状CA6的生成显著提高了浇注料试样的热震性和抗渣性。

 

  The corundum–spinel castables were prepared with tabular alumina, fused magnesium aluminate spinel, reactive α-Al2O3 powder as main raw materials. The calcium aluminate cement was used as a binder. The effect of calcination temperature on the microstructural evolution and properties of refractories was investigated by X-ray diffraction and scanning electron microscopy. The results show that the specimen sintered at 1 100 ℃ has higher medium-temperature mechanical properties due to the formation of in situ spinel with an eight-surface shape and the solid solution reaction of spinel and Al2O3. The formation of calcium hexaluminate (CA6) promotes the comprehensive performance of designed refractories at 1 600 ℃ due to the platelet shape of these crystals. The hot modulus of rupture can be increased by 219% (i.e., 24.18 MPa). It is also found that after three thermal shock cycles, the decreased cold crushing strength is only 15.47 MPa, and the keeping rate of strength of the specimen is increased by 14% (i.e., 84.50%). The formation of CA6 improves the thermal shock resistance and slag resistance of the refractories.

 
基金项目:
国家自然科学基金(51374162)资助。
作者简介:
文泽宇(1992—),男,硕士研究生。
参考文献:

 [1]刘延山. 基质组成对刚玉–尖晶石浇注料性能的影响[D]. 武汉: 武汉科技大学, 2016.

LIU Yanshan. Effect of matrix compositions on the properties of alumina–spinel castable (in Chinese, dissertation). Wuhan: Wuhan University of Science and Technology, 2016.
[2]BRAULIO M A L, RIGAUD M, BUHR A, et al. Spinel-containing alumina-based refractory castables[J]. Ceram Int, 2011, 37(6): 1705–1724.
[3]ABO–EL–ENEIN S A, ABOU–SEKKINA M M, KHALIL N M, et al. Microstructure and refractory properties of spinel containing castables[J]. Ceram Int, 2010, 36(5): 1711–1717.
[4]任俊辉, 任耘, 张军战, 等. 尖晶石对刚玉–尖晶石浇注料性能的影响[J]. 硅酸盐通报, 2009, 28(1): 90–93.
REN Junhui, REN Yun, ZHANG Junzhan, et al. Bull Chin Ceram Soc(in Chinese), 2009, 28(1): 90–93.
[5]KO Y C, CHAN C F. Effect of spinel content on hot strength of alumina–spinel castables in the temperature range 1 000–1 500 °C[J]. J Eur Ceram Soc, 1999, 19(15): 2633–2639.
[6]杜爽, 王志强, 周芬. 尖晶石种类对刚玉–尖晶石预制块性能的影响[J]. 耐火材料, 2015, 49(2): 176–178.
DU Shuang, WANG Zhiqiang, ZHOU Fen. Refractories (in Chinese), 2015, 49(2): 176–178.
[7]姚金甫, 张恩甫, 田守信. α-Al2O3微粉对刚玉–尖晶石浇注料性能的影响[J]. 耐火材料, 2008, 42(3): 209–211.
YAO Jinfu, ZHANG Enfu, TIAN Shouxin. Refractories (in Chinese), 2008, 42(3): 209–211.
[8]SAKO E Y, BRAULIO M A L, MILANEZ D H, et al. Microsilica role in the CA6 formation in cement-bonded spinel refractory castables[J]. J Mater Process Technol, 2009, 209(15): 5552–5557. 
[9]SAKO E Y, BRAULIO M A L, PANDOLFELLI V C. Microstructural evolution of magnesia-based castables containing microsilica[J]. Ceram Int, 2012, 38(7): 6027–6033.
[10]SAKO E Y, BRAULIO M A L, PANDOLFELLI V C. The corrosion resistance of microsilica-containing Al2O3–MgO and Al2O3–spinel castables[J]. Ceram Int, 2012, 38(6): 4783–4789.
[11]LIU Y S, HAN B Q, ZHANG T, et al. Effect of zirconia particle size on the properties of alumina–spinel castables[J]. Ceram Int, 2016, 42(15): 16961–16968.
[12]SARKAR R, BANNERJEE G. Effect of addition of TiO2 on reaction sintered MgO–Al2O3 spinels[J]. J Eur Ceram Soc, 2000, 20(20): 2133–2141.
[13]SARKAR R, DAS S K, BANERJEE G. Effect of addition of Cr2O3, on the properties of reaction sintered MgO–Al2O3, spinels[J]. J Eur Ceram Soc, 2002, 22(8): 1243–1250.
[14]SINGH A K, SARKAR R. Synthesis and characterization of alumina sol and its use as binder in no cement high-alumina refractory castables[J]. Int J Appl Ceram Tec, 2014, 12: E54–E60.
[15]SINGH A K, SARKAR R. Development of spinel sol bonded high pure alumina castable composition[J]. Ceram Int, 2016, 42(15): 17410–17419.
[16]BRAULIO M A L, BITTENCOURT L R M, PANDOLFELLI V C. Selection of binders for in situ, spinel refractory castables[J]. J Eur Ceram Soc, 2009, 29(13): 2727–2735.
[17]MARTINEZ A G T, LUZ A P, BRAULIO M A L, et al. CA6 impact on the corrosion behavior of cement-bonded spinel-containing refractory castables: An analysis based on thermodynamic simulations[J]. Ceram Int, 2014, 41(3): 4714–4725.
[18]KORGUL P, WILSON D R, LEE W E. Microstructural analysis of corroded alumina–spinel castable refractories[J]. J Eur Ceram Soc, 1997, 17(1): 77–84.
[19]BRAULIO M A L, MARTINEZ A G T, LUZ A P, et al. Basic slag attack of spinel-containing refractory castables[J]. Ceram Int, 2011, 37(6): 1935–1945.
[20]李楠, 顾华志, 赵惠忠. 耐火材料学[M]. 北京: 冶金工业出版社, 2012: 193.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com