[1]LUTJERING G, WILLIAMS J C. Titanium[M]. Berlin: Springer, 2007: 1–2.
[2]KROLL W. The production of ductile titanium[J]. Trans Electrochem Soc, 1940, 78(1): 35–47.
[3]GOPIENKO V G. Contact reaction of metallic titanium with oxide refractory materials[J]. Refractory, 1972, 78(1): 405–407.
[4]KUANG J P, HARING R A, CAMPBELL J. Investigate into refactories as crucible and mould materials for melting and casting γ-TiAl alloys[J]. Mater Sci Technol, 2000, 16: 1007–1016.
[5]KOSTOV A, FRIEDRICH B. Predicting thermodynamic stability of crucible oxides in molten titanium and titanium alloys[J]. Comput Mater Sci, 2006, 38(2): 374–385.
[6]LIN K F, LIN C C. Interfacial reactions between Ti6Al4V alloy and zirconia mold during casting[J]. J Mater Sci, 1999, 34(23): 5899–5906.
[7]GOMES F, BARBOSA J, RIBEIRO C S. Induction melting of γ-TiAl in CaO crucibles[J]. Intermetallics, 2008, 16: 1292–1297.
[8]CUI R J, GAO M, ZHANG H. Interaction between TiAl alloys and yttria refractory material in casting process[J]. Mater Process Technol, 2010, 210(9): 1190–1196.
[9]张喜燕, 赵永庆, 白晨光. 钛合金及应用[M]. 北京: 化学工业出版社, 2005: 21–24.
[10]TETSUI T, KOBAYASHI T, MORI T, et al. Evaluation of yttria applicability as a crucible for induction melting of TiAl alloy[J]. Mater Trans, 2010, 51(9): 1656–1662.
[11]高冬云. 锆酸钡基高温质子导体的制备和性能研究[D]. 天津: 天津大学, 2010.
GAO Dongyun. Electrical conductivity of the high-temperature proton conductor (in Chinese, dissertation). Tianjin: Tianjin University, 2010.
[12]BOHN H G, SCHOBER T. Electrical conductivity of the high-temperature proton conductor BaZr0.90Y0.10O2.95[J]. J Am Ceram Soc, 2000, 83(4): 768–772.
[13]MACMAUS-DRISCOLL J L, FOLTYNL S R, JIA Q X, et al. Strongly enhanced current densities in superconducting coated conductors of YBa2Cu3O7–x+BaZrO3[J]. Nat Mater, 2004, 3(7): 439–443.
[14]LIANG R X, BONN D A, HARDY W N, et al. Growth of high quality YBCO single crystals using BaZrO3 crucibles[J]. Phys C, 1998, 304: 105–111.
[15]张钊, 朱凯亮, 刘岚洁, 等. BaZrO3坩埚的制备及与钛合金熔体的界面反应[J]. 硅酸盐学报, 2013, 41(9): 1278–1283.
ZHANG Zhao, ZHU Kailiang, LIU Lanjie, et al. J Chin Cream Soc, 2013, 41(9): 1272–1283.
[16]贺进, 魏超, 李明阳, 等. BaZrO3耐火材料与TiAl合金熔体的界面反应[J]. 中国有色金属学报, 2015, 25(6): 1505–1511.
HE Jin, WEI Chao, LI Mingyang, et al. Chin J Noferr Met (in Chinese), 2015, 25(6): 1505–1511.
[17]李重河, 周汉, 陈光耀, 等. TiFe基储氢合金的BaZrO3坩埚熔炼制备及其储氢性能[J]. 重庆大学学报: 自然科学版, 2016, 39(2): 107–113.
LI Chonghe, ZHOU Han, CHEN Guangyao, et al. J Chongqing Univ: Nat Sci Ed (in Chinese), 2016, 39(2): 107–113.
[18]陈光耀, 程治玮, 王树森, 等. 钛熔体与BaZrO3耐火材料界面反应机理[J]. 硅酸盐学报, 2016, 44(6): 890–895.
CHEN Guangyao, CHENG Zhiwei, WANG Shusen, et al. J Chin Ceram Soc, 2016, 44(6): 890–895.
[19]LEI B, EMILIANA F, ZIQI S, et al. Sinteractivity proton conductivity and chemical stability of BaZr0.7In0.3O3–δ for solid oxide fuel cells (SOFCs)[J]. Solid State Ion, 2011, 196(1): 59–64.
[20]YANG Z N, LI J, QIU J B, et al. Synthesis and Photoluminescence Properties of Eu3+, Bi3+ Codoped BaZrO3 Phosphors[J]. Spectrosc Spectr Anal. 2013, 33(1): 19–22.
[21]LEVIN I, AMOS T G, Bell S M, et al. Phase equilibria, crystal structures, and dielectric anomaly in the BaZrO3-CaZrO3 system[J]. J Solid State Chem, 2003, 175: 170–180.
[22]BIN-GUO F, HONG-WEI W, CHUN-MING Z, et al. Interfacial reactions between Ti-1100 alloy and CaO crucible during casting process[J]. Trans Nonferr Met Soc China, 2014, 24(10): 3118–3125.
[23]GOMES F, BARBOS J, RIBEIRO C S. Induction melting of γ-TiAl in CaO crucibles[J]. Intermetallics, 2008, 16: 1292–1297.
[24]桂娜, 孟德珍, 鲁雄刚, 等. BaO-CaO-ZrO2三元系的评估及其在新耐火材料设计中的应用[J]. 热加工工艺, 2015, 44(7): 98–107.
GUI Na, MENG Dezhen, LU Xionggang, et al. Hot Working Technol (in Chinese), 2015, 44(7): 98–107.
[25]宋兆涛, 赵辉, 陈天池, 等. OⅡ空位BaZrO3晶体的第一性原理研究[J]. 天津师范大学学报: 自然科学版, 2011, 31(1): 35–41.
SONG Zhaotao, ZHAO Hui, CHEN Tianchi, et al. J Tianjin Norm Univ: Nat Sci Ed (in Chinese). 2011, 31(1): 35–41.
[26]ZEVIN L, KIMMEL G. Quantitative X-ray Diffractometry[M]. New York: Springer, 1995: 10–20.
|