首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
掺杂CaO对BaZrO3坩埚制备及其与钛合金界面反应的影响
作者:陈光耀1 2 李宝同1 2 高鹏越1 2 ALI Wajid1 2 秦子威1 2 鲁雄刚1 2 3 李重河1 2 3 
单位:1. 上海大学材料科学与工程学院 省部共建高品质特殊钢冶金与制备国家重点实验室 上海 200072 2. 上海大学材料科学与工程学院 上海市钢铁冶金新技术开发应用重点实验室 上海 200072 3. 上海特种铸造工程技术研究中心 上海 201605 
关键词:锆酸钡 氧化钙 掺杂 钛合金 界面反应 
分类号:TQ17
出版年,卷(期):页码:2017,45(9):1354-1359
DOI:10.14062/j.issn.0454-5648.2017.09.19
摘要:

 用BaCO3、ZrO2和CaO混合粉料,在1 400 ℃经高温固相反应合成了BaZrO3和CaO掺杂BaZrO3粉料,采用冷等静压结合固相烧结技术,在1 750 ℃烧成BaZrO3和CaO掺杂BaZrO3坩埚,并熔炼Ti2Ni合金,研究了CaO对BaZrO3坩锅微观组织及其与钛合金界面反应的影响。结果表明:掺杂量为15%(摩尔分数)的CaO部分固溶进BaZrO3,坩埚在烧成过程中,过量CaO部分在坩埚内部团聚,阻碍Ba1–xCaxZrO3晶粒的生长,导致坩埚内部出现较大孔洞;另一部分在坩埚壁析出,析出层主要由CaO和Ba1–xCaxZrO3组成,厚度约为70 μm。BaZrO3坩埚与钛合金界面反应层厚度约为270 μm,而CaO掺杂BaZrO3坩埚与合金并无明显界面反应层。

 

 CaO-doped BaZrO3 and BaZrO3 powders were synthesized by a solid-state method at 1 400 ℃ with BaCO3, ZrO2 and CaO powder as starting materials, and subsequently titanium alloys were melted in two crucibles that were prepared with the synthesized powders by cold isostatic pressing and solid-state sintering at 1 750 ℃, respectively. The effect of CaO additive on the microstructure evolution of BaZrO3 crucible and the interfacial reaction with titanium alloys was investigated. The results show that a part of CaO salutes into BaZrO3, and the excessive CaO gathers together in sintering process, hindering the sintering of Ba1–xCaxZrO3 grains and resulting in massive big pores in the crucible. A precipitation behavior of CaO in the crucible wall occurs, and this precipitation layer is mainly composed of CaO and Ba1–xCaxZrO3 with the thickness of approximately 70 μm. The erosion thickness of BaZrO3 crucible is 270 μm, and little interfacial reaction between titanium alloys and CaO-doped BaZrO3 crucible occurs.

 
基金项目:
国家自然科学基金(51374142);国家“973”计划(2014CB643403);上海市科委基金(14JC1491400)资助。
作者简介:
陈光耀(1987—),男,博士研究生。
参考文献:

 [1]LUTJERING G, WILLIAMS J C. Titanium[M]. Berlin: Springer, 2007: 1–2.

[2]KROLL W. The production of ductile titanium[J]. Trans Electrochem Soc, 1940, 78(1): 35–47.
[3]GOPIENKO V G. Contact reaction of metallic titanium with oxide refractory materials[J]. Refractory, 1972, 78(1): 405–407.
[4]KUANG J P, HARING R A, CAMPBELL J. Investigate into refactories as crucible and mould materials for melting and casting γ-TiAl alloys[J]. Mater Sci Technol, 2000, 16: 1007–1016.
[5]KOSTOV A, FRIEDRICH B. Predicting thermodynamic stability of crucible oxides in molten titanium and titanium alloys[J]. Comput Mater Sci, 2006, 38(2): 374–385.
[6]LIN K F, LIN C C. Interfacial reactions between Ti6Al4V alloy and zirconia mold during casting[J]. J Mater Sci, 1999, 34(23): 5899–5906.
[7]GOMES F, BARBOSA J, RIBEIRO C S. Induction melting of γ-TiAl in CaO crucibles[J]. Intermetallics, 2008, 16: 1292–1297.
[8]CUI R J, GAO M, ZHANG H. Interaction between TiAl alloys and yttria refractory material in casting process[J]. Mater Process Technol, 2010, 210(9): 1190–1196.
[9]张喜燕, 赵永庆, 白晨光. 钛合金及应用[M]. 北京: 化学工业出版社, 2005: 21–24.
[10]TETSUI T, KOBAYASHI T, MORI T, et al. Evaluation of yttria applicability as a crucible for induction melting of TiAl alloy[J]. Mater Trans, 2010, 51(9): 1656–1662.
[11]高冬云. 锆酸钡基高温质子导体的制备和性能研究[D]. 天津: 天津大学, 2010.
GAO Dongyun. Electrical conductivity of the high-temperature proton conductor (in Chinese, dissertation). Tianjin: Tianjin University, 2010.
[12]BOHN H G, SCHOBER T. Electrical conductivity of the high-temperature proton conductor BaZr0.90Y0.10O2.95[J]. J Am Ceram Soc, 2000, 83(4): 768–772.
[13]MACMAUS-DRISCOLL J L, FOLTYNL S R, JIA Q X, et al. Strongly enhanced current densities in superconducting coated conductors of YBa2Cu3O7–x+BaZrO3[J]. Nat Mater, 2004, 3(7): 439–443.
[14]LIANG R X, BONN D A, HARDY W N, et al. Growth of high quality YBCO single crystals using BaZrO3 crucibles[J]. Phys C, 1998, 304: 105–111.
[15]张钊, 朱凯亮, 刘岚洁, 等. BaZrO3坩埚的制备及与钛合金熔体的界面反应[J]. 硅酸盐学报, 2013, 41(9): 1278–1283.
ZHANG Zhao, ZHU Kailiang, LIU Lanjie, et al. J Chin Cream Soc, 2013, 41(9): 1272–1283.
[16]贺进, 魏超, 李明阳, 等. BaZrO3耐火材料与TiAl合金熔体的界面反应[J]. 中国有色金属学报, 2015, 25(6): 1505–1511.
HE Jin, WEI Chao, LI Mingyang, et al. Chin J Noferr Met (in Chinese), 2015, 25(6): 1505–1511.
[17]李重河, 周汉, 陈光耀, 等. TiFe基储氢合金的BaZrO3坩埚熔炼制备及其储氢性能[J]. 重庆大学学报: 自然科学版, 2016, 39(2): 107–113.
LI Chonghe, ZHOU Han, CHEN Guangyao, et al. J Chongqing Univ: Nat Sci Ed (in Chinese), 2016, 39(2): 107–113.
[18]陈光耀, 程治玮, 王树森, 等. 钛熔体与BaZrO3耐火材料界面反应机理[J]. 硅酸盐学报, 2016, 44(6): 890–895.
CHEN Guangyao, CHENG Zhiwei, WANG Shusen, et al. J Chin Ceram Soc, 2016, 44(6): 890–895.
[19]LEI B, EMILIANA F, ZIQI S, et al. Sinteractivity proton conductivity and chemical stability of BaZr0.7In0.3O3–δ for solid oxide fuel cells (SOFCs)[J]. Solid State Ion, 2011, 196(1): 59–64.
[20]YANG Z N, LI J, QIU J B, et al. Synthesis and Photoluminescence Properties of Eu3+, Bi3+ Codoped BaZrO3 Phosphors[J]. Spectrosc Spectr Anal. 2013, 33(1): 19–22.
[21]LEVIN I, AMOS T G, Bell S M, et al. Phase equilibria, crystal structures, and dielectric anomaly in the BaZrO3-CaZrO3 system[J]. J Solid State Chem, 2003, 175: 170–180.
[22]BIN-GUO F, HONG-WEI W, CHUN-MING Z, et al. Interfacial reactions between Ti-1100 alloy and CaO crucible during casting process[J]. Trans Nonferr Met Soc China, 2014, 24(10): 3118–3125.
[23]GOMES F, BARBOS J, RIBEIRO C S. Induction melting of γ-TiAl in CaO crucibles[J]. Intermetallics, 2008, 16: 1292–1297.
[24]桂娜, 孟德珍, 鲁雄刚, 等. BaO-CaO-ZrO2三元系的评估及其在新耐火材料设计中的应用[J]. 热加工工艺, 2015, 44(7): 98–107.
GUI Na, MENG Dezhen, LU Xionggang, et al. Hot Working Technol (in Chinese), 2015, 44(7): 98–107.
[25]宋兆涛, 赵辉, 陈天池, 等. OⅡ空位BaZrO3晶体的第一性原理研究[J]. 天津师范大学学报: 自然科学版, 2011, 31(1): 35–41.
SONG Zhaotao, ZHAO Hui, CHEN Tianchi, et al. J Tianjin Norm Univ: Nat Sci Ed (in Chinese). 2011, 31(1): 35–41.
[26]ZEVIN L, KIMMEL G. Quantitative X-ray Diffractometry[M]. New York: Springer, 1995: 10–20.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com