首页期刊信息编委及顾问期刊发行联系方式使用帮助留言板ENGLISH
位置:首页 >> 正文
骨料裹浆厚度对混凝土流变性能的影响
作者:焦登武1 安晓鹏2 史才军1 2  豫2  晃1 何富强3 
单位:1. 湖南大学土木工程学院 长沙 410082 2. 中国建筑材料科学研究总院绿色建筑材料国家重点实验室 北京 100024 3. 厦门理工学院土木工程与建筑系 福建 厦门 361024 
关键词:Bingham模型 骨料裹浆厚度 流变性能 组成设计 混凝土 
分类号:TQ172
出版年,卷(期):页码:2017,45(9):1360-1366
DOI:10.14062/j.issn.0454-5648.2017.09.20
摘要:

 基于Bingham模型,测试了不同骨料裹浆厚度时新拌混凝土的流变参数,探究了骨料裹浆厚度对新拌混凝土流变性能的影响。结果表明,改变骨料裹浆厚度能够明显影响新拌混凝土的流变性能。在保持骨料基本参数不变时,随着骨料裹浆厚度的增加,混凝土的屈服应力、塑性黏度和静态屈服应力基本呈降低趋势,坍落度逐渐升高,混凝土的流动性得到改善;当在特定水灰比、骨料裹浆厚度相对较高时,拌合物的坍落度较高,且存在轻微离析现象。通过建立流变参数随骨料裹浆厚度的变化曲线,能够确定混凝土中的最佳胶凝材料用量,进而指导混凝土的组成设计。

 

 The effect of paste thickness on coated aggregates on the rheological properties of fresh concrete was investigated based on Bingham model. The results show that the paste thickness on coated aggregates can have a significant effect on the rheological properties of concrete. The yield stress, plastic viscosity and static yield stress of concrete gradually decrease with the increase of paste thickness on coated aggregates under the fixed parameters of aggregates. The slump gradually increases, thus improving the flowability. At a specific water-to-cement ratio and a relatively high paste thickness on coated aggregates, the mixture shows a higher slump and the slight segregation appears. The optimum amount of cementitious materials can be determined by a relationship between rheological parameters and paste thickness on coated aggregates. It could be effective to guide the concrete mixture design by controlling the rheological properties of fresh concrete.

 
基金项目:
国家国际科技合作专项(2015DFA50880);国家自然科学基金(U1305243,51502279)。
作者简介:
焦登武(1992—),男,博士研究生。
参考文献:

 [1]Denis A, Attar A, Breysse D, et al. Effect of coarse aggregate on the workability of sandcrete[J]. Cem Concr Res, 2002, 32: 701–706.

[2]Kwan A K H, Li L G. Combined effects of water film, paste film and mortar film thicknesses on fresh properties of concrete[J]. Constr Build Mater, 2014, 50: 598–608.
[3]Mihashi H, Ishikawa N. Quantification of fresh and mechanical properties of HFRCC by excess paste thickness[J]. High Perform Fiber Reinf Cem Compos, 2012: 67–74.
[4]Sun K, Zhou X, Gong C, et al. Influence of paste thickness on coated aggregates on properties of high-density sulphoaluminate cement concrete[J]. Constr Build Mater, 2016, 115: 125–131.
[5]Torres A, Hu J, Ramos A. The effect of the cementitious paste thickness on the performance of pervious concrete[J]. Constr Build Mater, 2015, 95: 850–859.
[6]Reinhardt H W, Wüstholz T. About the influence of the content and composition of the aggregates on the rheological behaviour of self-compacting concrete[J]. Mater Struct, 2007, 39(7): 683–693.
[7]赵洪, 杨永民, 李方贤, 等. 骨料包裹层厚度的研究及其对多孔混凝土性能的影响[J]. 混凝土, 2014(02): 29–32.
Zhao H, Yang Y, Li F, et al. Concrete (in Chinese), 2014(02): 29–32.
[8]张建智, 蔡志达, 李隆盛, 等. 骨料裹浆厚度对混凝土性质影响之研究[J]. 建筑材料学报. 2009, 12(4): 384–389.
Zhang J, Cai Z, Li L, et al. J Build Mater (in Chinese), 2009(04): 384–389.
[9]王海娜. 自密实混凝土的骨料比表面法配合比设计及其基本性能研究[D]. 浙江: 浙江大学, 2007.
Wang H. Researching the mix design of self-compacting concrete based on special surface area method of aggregates and testing its basic performance (in Chinese, dissertation). Zhejiang: Zhejiang University (in Chinese), 2007.
[10]Koehler E P, Fowler D W. Development of a portable rheometer for fresh portland cement concrete[J]. ICAR Rep, 2004: 103–105.
[11]Tasi C T, Hwang C L, Li L S. The effect of aggregate gradation on engineering properties of high performance concrete[J]. J ASTM Int, 2005, 3(3): 1–12.
[12]Zerbino R, Barragán B, Garcia T, et al. Workability tests and rheological parameters in self-compacting concrete[J]. Mater Struct, 2009, 42(7): 947–960.
[13]Kovler K, Roussel N. Properties of fresh and hardened concrete[J]. Cem Concr Res, 2011, 41(7): 775–792.
[14]Koehler E P, Fowler D W, Ferraris C F, et al. A new, portable rheometer for fresh self-consolidating concrete[J]. ACI Spec Publ, 2005, 233(7): 97–115.
[15]Wallevik J E. Relationship between the Bingham parameters and slump[J]. Cem Concr Res, 2006, 36(7): 1214–1221.
[16]Tanigawa Y, Mori H. Analytical study on deformation of fresh concrete[J]. J Eng Mech, 1989, 115(3): 493–508.
[17]Tanigawa Y, Mori H, Watanabe K. Computer simulation of consistency and rheology tests of fresh concrete by viscoplastic finite element method[A]//Proceeding of RILEM Colloquium: Properties of concrete[C]. 1990: 301–308.
[18]Kwan A K H, Li L G. Combined effects of water film, paste film and mortar film thicknesses on fresh properties of concrete[J]. Constr Build Mater, 2014, 50: 598–608.
[19]Koehler E P, Fowler D W. Development and use of a portable rheometer for concrete[A]//Supplementary Proceedings of the Eighth CANMET/ACI International Conference on Recent Advances in Concrete Technology[C]. Montreal, Canada, 2006: 53–72.
[20]Lowke D, Kränkel T, Gehlen C, et al. Effect of cement on superplasticizer adsorption, yield stress, thixotropy and segregation resistance[A]//KHAYAT K, FEYS D eds. Design, Production and Placement of Self-consolidating Concrete[C]. Dordrecht, 2010: 91–101.
[21]Roussel N, Cussigh F. Distinct-layer casting of SCC: The mechanical consequences of thixotropy[J]. Cem Concr Res, 2008, 38(5): 624–632.
[22]Feys D, Khayat K H, Khatib R. How do concrete rheology, tribology, flow rate and pipe radius influence pumping pressure?[J]. Cem Concr Compos, 2016, 66: 38–46.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com