[1] STEELE B C, HEINZEL A. Materials for fuel-cell technologies[J]. Nature, 2001(414): 345–352.
[2] BRETT D J, ATKINSON A, BRANDON N P, et al. Intermediate temperature solid oxide fuel cells[J]. Chem Soc Rev, 2008(37): 1568–1578.
[3] ORMEROD R M. Solid oxide fuel cells[J]. Chem Soc Rev, 2003(32): 17–28.
[4] 韩敏芳, 彭苏萍. 固体氧化物燃料电池材料及制备[M]. 北京: 科学出版社, 2004: 9–11.
[5] 曹加锋, 朱志文, 刘卫. 钙钛矿结构质子导体基固体氧化物燃料电池电解质研究进展[J]. 硅酸盐学报, 2015, 43(6): 734–740.
CAO Jiafeng, ZHU Zhiwen, LIU Wei. J Chin Ceram, 2015, 43(6): 734–740.
[6] MALAVASI L, FISHER C A, ISLAM M S. Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features[J]. Chem Soc Rev, 2010, 39(11): 4370–4387.
[7] SUNARSO J, HASHIM S S, ZHU N, et al. Perovskite oxides applications in high temperature oxygen separation, solid oxide fuel cell and membrane reactor: A review[J]. Prog Energ Combust, 2017, 61: 57–77.
[8] ATKINSON A, BARNETT S, GORTE R J, et al. Advanced anodes for high-temperature fuel cells[J]. Nat Mater, 2004(3): 17–27.
[9] COWIN P I, PETIT C T, LAN R, et al. Recent progress in the development of anode materials for solid oxide fuel cells[J]. Adv Energy Mater, 2011(1): 314–332.
[10] KILNER J A, BURRIEL M. Materials for intermediate-temperature solid-oxide fuel cells[J]. Ann Rev Mater Res, 2014(44): 365–393.
[11] MAHATO N, BANERJEE A, GUPTA A, et al. Progress in material selection for solid oxide fuel cell technology: A review[J]. Prog Mater Sci, 2015(72): 141–337.
[12] ORERA A, SLATER P. New chemical systems for solid oxide fuel cells[J]. Chem Mater, 2009(22): 675–690.
[13] FERGUS J W. Electrolytes for solid oxide fuel cells[J]. J Power Sources, 2006(162): 30–40.
[14] BADWAL S. Zirconia-based solid electrolytes: microstructure, stability and ionic conductivity[J]. Solid State Ionics, 1992(52): 23–32.
[15] ETSELL T, FLENGAS S N. Electrical properties of solid oxide electrolytes[J]. Chem Rev, 1970(70): 339–376.
[16] 胡敏, 张震宇, 陈涵, 等. 固体氧化物燃料电池用电解质YSZ表面介观结构的修饰[J]. 硅酸盐学报, 2016, 44(4): 498–502.
HU Min, ZHANG Zhenyu, CHEN Han, et al. J Chin Ceram Soc, 2016, 44(4): 489–502.
[17] 韩敏芳, 杨志宾, 刘泽, 等. 亚微米晶粒氧化钇稳定氧化锆电解质的稳定性[J]. 硅酸盐学报, 2010, 38(1): 1–6.
HAN Minfang, YANG Zhibin, LIU Ze, et al. J Chin Ceram Soc, 2010, 38(1): 1–6.
[18] GOODENOUGH J B. Oxide-ion electrolytes[J]. Ann Rev Mater Res, 2003, 33: 91–128.
[19] STEELE B C H. Appraisal of Ce1−yGdyO2−y/2 electrolytes for IT-SOFC operation at 500 ℃[J]. Solid State Ionics, 2000, 129: 95–110.
[20] MOGENSEN M, SAMMES N M, TOMPSETT G A. Physical, chemical and electrochemical properties of pure and doped ceria[J]. Solid State Ionics, 2000, 129: 63–94.
[21] KHARTON V V, FIGUEIREDO F M, NAVARRO L, et al. Ceria-based materials for solid oxide fuel cells[J]. J Mater Sci, 2001, 36: 1105–1117.
[22] WANG S, INABA H, TAGAWA H, et al. Nonstoichiometry of Ce0.9Gd0.1O1.95−x[J]. Solid State Ionics, 1998, 107: 73–79.
[23] IWAHARA H, ESAKA T, SATO T, et al. Formation of high oxide ion conductive phases in the sintered oxides of the system Bi2O3-Ln2O3 (Ln= La,Yb)[J]. J Solid State Chem, 1981, 39: 173–180.
[24] FENG M, GOODENOUGH J. A superior oxide-ion electrolyte[J]. Eur J Solid State Inorg Chem, 1994, 31: 663–672.
[25] ISHIHARA T, MATSUDA H, TAKITA Y. Doped LaGaO3 perovskite type oxide as a new oxide ionic conductor[J]. J Am Chem Soc, 1994, 116: 3801–3803.
[26] HUANG K, FENG M, GOODENOUGH J B, et al. Electrode performance test on single ceramic fuel cells using as electrolyte Sr-and Mg-doped laGaO3[J]. J Electrochem Soc, 1997, 144: 3620–3624.
[27] HUANG K, TICHY R S, GOODENOUGH J B. Superior perovskite oxide-ion conductor; strontium-and magnesium-doped LaGaO3: I, phase relationships and electrical properties[J]. J Am Ceram Soc, 1998, 81: 2565–2575.
[28] 史可顺. 中温固体氧化物燃料电池电解质材料及其制备工艺的研究发展趋势[J]. 硅酸盐学报, 2008, 36(11): 1676–1688.
SHI Keshun. J Chin Ceram Soc, 2008, 36(11): 1676–1688.
[29] 黄贤良, 赵海雷, 吴卫江, 等. 固体氧化物燃料电池阳极材料的研究进展[J]. 硅酸盐学报, 2005, 33(11): 109–115.
HUANG Xianliang, ZHAO Hailei, WU Weijiang, et al. J Chin Ceram Soc, 2005, 33(11): 109–115.
[30] 汪峰, 缪馥星, 官万兵. 不同还原条件下制备的固体氧化物燃料电池支撑阳极Ni-YSZ的性能[J]. 硅酸盐学报, 2015, 43(5): 650–656.
WANG Feng, MIAO Fuxing, GUAN Wanbing. J Chin Ceram Soc, 2015, 43(5): 650–656.
[31] WANG W, SU C, WU Y, et al. Progress in solid oxide fuel cells with nickel-based anodes operating on methane and related fuels[J]. Chem Rev, 2013, 113(10): 8104–8151.
[32] G R T M. Comprehensive review of methane conversion in solid oxide fuel cells: prospects for efficient electricity generation from natural gas[J]. Prog Energ Combust, 2016, 54: 1–64.
[33] BOLDRIN P, RUIZ-TREJO E, MERMELSTEIN J, et al. Strategies for carbon and sulfur tolerant solid oxide fuel cell materials, incorporating lessons from heterogeneous catalysis[J]. Chem Rev, 2016, 116(22): 13633–13684.
[34] SASAKI K, TERAOKA Y. Equilibria in fuel cell gases II. The CHO ternary diagrams[J]. J Electrochem Soc, 2003, 150(7): A885–A888.
[35] HANNA J, LEE W Y, SHI Y, et al. Fundamentals of electro-and thermochemistry in the anode of solid-oxide fuel cells with hydrocarbon and syngas fuels[J]. Prog Energ Combust, 2014, 40: 74–111.
[36] YANG L, CHOI Y, QIN W, et al. Promotion of water-mediated carbon removal by nanostructured barium oxide/nickel interfaces in solid oxide fuel cells[J]. Nat Commun, 2011(2): 357.
[37] 刘珊, 王建新, 何长荣, 等. 电解质支撑电池的NiO-Ce0.9Gd 0.1O1.95阳极的制备及性能[J]. 硅酸盐学报, 2013, 41(8): 1057–1062.
LIU Shan, WANG Jianxin,HE Changrong, et al. J Chin Ceram Soc, 2013, 41(8): 1057–1062.
[38] MCINTOSH S, GORTE R J. Direct Hydrocarbon Solid Oxide Fuel Cells[J]. Chem Rev, 2004, 104(10): 4845–4866.
[39] PARK S, VOHS J M, GORTE R J. Direct oxidation of hydrocarbons in a solid-oxide fuel cell[J]. Nature, 2000, 404(6775): 265–267.
[40] JUNG S, LU C, HE H, et al. Influence of composition and Cu impregnation method on the performance of Cu/CeO2/YSZ SOFC anodes[J]. J Power Sources, 2006, 154(1): 42–50.
[41] SIN A, KOPNIN E, DUBITSKY Y, et al. Performance and life-time behaviour of NiCu–CGO anodes for the direct electro-oxidation of methane in IT-SOFCs[J]. J Power sources, 2007, 164(1): 300–305.
[42] MARINA O A, CANFIELD N L, STEVENSON J W. Thermal, electrical, and electrocatalytical properties of lanthanum-doped strontium titanate[J]. Solid State Ionics, 2002, 149(1): 21–28.
[43] NEAGU D, IRVINE J T. Structure and properties of La0.4Sr0.4TiO3 ceramics for use as anode materials in solid oxide fuel cells[J]. Chem Mater, 2010, 22(17): 5042–5053.
[44] AGUILAR L, ZHA S, CHENG Z, et al. A solid oxide fuel cell operating on hydrogen sulfide (H2S) and sulfur-containing fuels[J]. J Power Sources, 2004, 135(1): 17–24.
[45] CHENG Z, ZHA S, AGUILAR L, et al. Chemical, electrical, and thermal properties of strontium doped lanthanum vanadate[J]. Solid State Ionics, 2005, 176(23): 1921–1928.
[46] TAO S, IRVINE J T. A redox-stable efficient anode for solid-oxide fuel cells[J]. Nat Mater, 2003, 2(5): 320–323.
[47] TAO S, IRVINE J T, KILNER J A. An Efficient Solid Oxide Fuel Cell Based upon Single‐Phase Perovskites[J]. Adv Mater, 2005, 17(14): 1734–1737.
[48] HUANG Y H, DASS R I, XING Z L, et al. Double perovskites as anode materials for solid-oxide fuel cells[J]. Science, 2006(312): 254–257.
[49] HUANG Y H, DASS R I, DENYSZYN J C, et al. Synthesis and characterization of Sr2MgMoO6−δ an anode material for the solid oxide fuel cell[J]. J Electrochem Soc, 2006, 153(7): A1266–A1272.
[50] LIU Q, DONG X, XIAO G, et al. A novel electrode material for symmetrical SOFCs[J]. Adv Mater, 2010(22): 5478–5482.
[51] SU C, WANG W, LIU M, et al. Progress and prospects in symmetrical solid oxide fuel cells with two identical electrodes[J]. Adv Energy Mater, 2015, 5(14): 1500188.
[52] BASTIDAS D M, TAO S, IRVINE J T. A symmetrical solid oxide fuel cell demonstrating redox stable perovskite electrodes[J]. J Mater Chem, 2006, 16(17): 1603–1605.
[53] SENGODAN S, CHOI S, JUN A, et al. Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells[J]. Nat Mater, 2015, 14(2): 205–209.
[54] YANG C, YANG Z, JIN C, et al. Sulfur-Tolerant Redox-Reversible Anode Material for Direct Hydrocarbon Solid Oxide Fuel Cells[J]. Adv Mater, 2012, 24(11): 1439–1443.
[55] YANG Z, XU N, HAN M, et al. Performance evaluation of La0.4Sr0.6Co0.2Fe0.7Nb0.1O3−δ as both anode and cathode material in solid oxide fuel cells[J]. Int J Hydrogen Energ, 2014, 39(14): 7402–7406.
[56] NEAGU D, TSEKOURAS G, MILLER D N, et al. In situ growth of nanoparticles through control of non-stoichiometry[J]. Nat Chem, 2013, 5(11): 916–923.
[57] NEAGU D, OH T S, MILLER D N, et al. Nano-socketed nickel particles with enhanced coking resistance grown in situ by redox exsolution[J]. Nat Commun, 2015(6): 8120.
[58] DU Z, ZHAO H, YI S, et al. High-performance anode material Sr2FeMo0.65Ni0.35O6−δ with in situ exsolved nanoparticle catalyst[J]. ACS Nano, 2016, 10(9): 8660–8669.
[59] MADSEN B, KOBSIRIPHAT W, WANG Y, et al. Nucleation of nanometer-scale electrocatalyst particles in solid oxide fuel cell anodes[J]. J Power Sources, 2007, 166(7): 64–67.
[60] KOBSIRIPHAT W, MADSEN B, WANG Y, et al. La0.8Sr0.2Cr1−x RuxO3−δ–Gd0.1Ce0.9O1.95 solid oxide fuel cell anodes: Ru precipitation and electrochemical performance[J]. Solid State Ionics, 2009, 180(2): 257–264.
[61] KOBSIRIPHAT W, MADSEN B, WANG Y, et al. Nickel-and ruthenium-doped lanthanum chromite anodes: effects of nanoscale metal precipitation on solid oxide fuel cell performance[J]. J Electrochem Soc, 2010, 157(2): B279–B284.
[62] BIERSCHENK D M, POTTER-NELSON E, HOEL C, et al. Pd-substituted (La, Sr)CrO3−δ–Ce0.9Gd0.1O2−δ solid oxide fuel cell anodes exhibiting regenerative behavior[J]. J Power Sources, 2011, 196(6): 3089–3094.
[63] YANG C, LI J, LIN Y, et al. In situ fabrication of CoFe alloy nanoparticles structured (Pr0.4Sr0.6)3(Fe0.85Nb0.15)2O7 ceramic anode for direct hydrocarbon solid oxide fuel cells[J]. Nano Energy, 2015, 11: 704–710.
[64] ARRIV C, DELAHAYE T, JOUBERT O, et al. Exsolution of nickel nanoparticles at the surface of a conducting titanate as potential
hydrogen electrode material for solid oxide electrochemical cells[J]. J Power Sources, 2013, 223: 341–348.
[65] ADLER S B. Factors governing oxygen reduction in solid oxide fuel cell cathodes[J]. Chem Rev, 2004, 104(10): 4791–4844.
[66] LARRAMENDI I R D, ORTIZ-VITORIANO N, BAUTISTA I B D, et al. Designing Perovskite Oxides for Solid Oxide Fuel Cells, in: L PAN, G ZHU (Eds.) Perovskite Materials-Synthesis, Characterisation, Properties, and Applications[M]. Place InTech, Published, 2016: 20.
[67] JACOBSON A J. Materials for solid oxide fuel cells[J]. Chem Mater, 2009, 22(3): 660–674.
[68] PETROV A, KONONCHUK O, ANDREEV A, et al. Crystal structure, electrical and magnetic properties of La1−xSrxCoO3−y[J]. Solid State Ionics, 1995, 80(3/4): 189–199.
[69] CHEN D, CHEN C, BAIYEE Z M, et al. Nonstoichiometric oxides as low-cost and highly-efficient oxygen reduction/evolution catalysts for low-temperature electrochemical devices[J]. Chem Rev, 2015, 115(18): 9869–9921.
[70] SHAO Z, HAILE S M. A high-performance cathode for the next generation of solid-oxide fuel cells[J]. Nature, 2004, 431(7005): 170–173.
[71] ZHOU W, RAN R, SHAO Z. Progress in understanding and development of Ba0.5Sr0.5Co0.8Fe0.2O3−δ-based cathodes for intermediate-temperature solid-oxide fuel cells: a review[J]. J Power Sources, 2009, 192(2): 231–246.
[72] HIBINO T, HASHIMOTO A, INOUE T, et al. A low-operating-temperature solid oxide fuel cell in hydrocarbon-air mixtures[J]. Science, 2000, 288(5473): 2031–2033.
[73] TARANC N A, BURRIEL M, SANTISO J, et al. Advances in layered oxide cathodes for intermediate temperature solid oxide fuel cells[J]. J Mater Chem, 2010, 20(19): 3799–3813.
[74] TASKIN A, LAVROV A, ANDO Y. Achieving fast oxygen diffusion in perovskites by cation ordering[J]. Appl Phys Lett, 2005, 86(9): 091910.
[75] ZHANG K, GE L, RAN R, et al. Synthesis, characterization and evaluation of cation-ordered LnBaCo2O5+δ as materials of oxygen permeation membranes and cathodes of SOFCs[J]. Acta Mater, 2008, 56(17): 4876–4889.
[76] KIM G, WANG S, JACOBSON A, et al. Rapid oxygen ion diffusion and surface exchange kinetics in PrBaCo2O5+x with a perovskite related structure and ordered A cations[J]. J Mater Chem, 2007, 17(24): 2500–2505.
[77] XIAO G, LIU Q, WANG S, et al. Synthesis and characterization of Mo-doped SrFeO3−δ as cathode materials for solid oxide fuel cells[J]. J Power Sources, 2012, 202: 63–69.
[78] 谢志翔, 赵海雷, 周雄, 等. 固体氧化物燃料电池双钙钛矿型电极材料的研究进展[J]. 硅酸盐学报, 2010, 38(6): 1140–1144.
XIE Zhixiang, ZHAO Hailei, ZHOU Xiong, et al. J Chin Ceram Soc, 2010, 38(6): 1140–1144.
[79] HERN NDEZ A M, MOGNI L, CANEIRO A. La2NiO4+δ as cathode for SOFC: Reactivity study with YSZ and CGO electrolytes[J]. Int J Hydrogen Energ, 2010, 35(11): 6031–6036.
|