首页期刊信息编委及顾问期刊发行联系方式使用帮助留言板ENGLISH
位置:首页 >> 正文
固体氧化物燃料电池中的陶瓷材料
作者:韩敏芳 张永亮 
单位:1. 清华大学热能工程系 电力系统及发电设备控制和仿真国家重点实验室 北京 100083  2. 清华东莞创新中心 广东 东莞 523808 
关键词:固体氧化物燃料电池 氧离子导体 混合离子电子导体 金属陶瓷阳极 钙钛矿电极 
分类号:O614
出版年,卷(期):页码:2017,45(11):0-0
DOI:10.14062/j.issn.0454-5648.2017.11.02
摘要:
 固体氧化物燃料电池(SOFC)也称为陶瓷燃料电池,其关键组成电解质、阴极和阳极均为陶瓷氧化物材料。致密电解
质薄膜材料是核心,主要是(纯)氧离子导体,其电导率依赖于氧化物中的氧离子空位传导,氧空位主要来源于氧化物中低价
金属离子掺杂;工业上主要使用萤石结构Y2O3 掺杂的ZrO2(YSZ)和Sc2O3 掺杂的ZrO2(ScSZ),更高氧离子电导率的材料包括
掺杂的CeO2、δ-Bi2O3 和掺杂的LaGaO3 钙钛矿材料,有望在中低温下使用。电极都是多孔陶瓷材料,同时具有氧离子传导
和电子传导性能。工业上阳极主要采用Ni-YSZ 多孔金属陶瓷,具有混合离子电子导电性(MIEC)的钙钛矿材料是现在的研究
热点。工业上阴极材料主要是掺杂LaMnO3 和YSZ 复合陶瓷,在高温下具有良好的电化学性能和稳定性;中高温范围内被认
可的材料是掺杂LaFeO3 基钙钛矿材料,以La0.6Sr0.4Co0.2Fe0.8O3-δ 为代表,具有良好的电化学活性和稳定性;优化材料组分和
结构仍然是阴极材料的研究重点,也是SOFC 领域必须突破的重要方向。
 
Solid oxide fuel cell (SOFC) is known as a ceramic fuel cell. The key components including electrolyte, cathode and anode
are ceramic materials. The dense electrolyte film requires a pure oxygen ion conductivity. In general, the oxygen ion conductivity is
mainly derived from the oxygen vacancy in oxide materials by doping lower valence metallic ions. Fluorite structured Y2O3 stabilized
ZrO2 (YSZ) and Sc2O3 stabilized ZrO2 (ScSZ) are the main electrolyte materials for industrial application. The doped CeO2, δ-Bi2O3
and doped LaGaO3 perovskite, with a higher oxygen ion conductivity, have a potential application for SOFC at a lower temperature.
The electrodes are porous ceramic materials with oxygen ion and electron conductivity. Ni-YSZ cermet has been used in industries
due to its high electrochemical performance. The perovskite materials with a mixed ionic and electronic conductivity (MIEC) have
attracted considerable attention because of their potential applications in SOFC under hydrocarbon fuels. Doped LaMnO3-YSZ
composite ceramic is a widely used cathode material for high-temperature SOFC, having a high electrochemical performance and a
good stability in long-term operation. While the doped LaFeO3, especially La0.6Sr0.4Co0.2Fe0.8O3, is used in intermediate-temperature
SOFC, also showing good electrochemical activity and stability. Moreover, optimizing the composition and structure of cathode
material remains a research focus for the development of SOFC.
基金项目:
国家重大研发计划(2017YFB0601903);北京市百名领军人才 项目(Z151100000315031);山西省科技厅项目(MD2014-08); 东莞市引进创新科研团队(201460720100025);清华大学自 主科研计划(2015THZ0)。
作者简介:
韩敏芳(1967—),女,博士,教授。
参考文献:
[1] STEELE B C, HEINZEL A. Materials for fuel-cell technologies[J]. Nature, 2001(414): 345–352.
[2] BRETT D J, ATKINSON A, BRANDON N P, et al. Intermediate temperature solid oxide fuel cells[J]. Chem Soc Rev, 2008(37): 1568–1578.
[3] ORMEROD R M. Solid oxide fuel cells[J]. Chem Soc Rev, 2003(32): 17–28.
[4] 韩敏芳, 彭苏萍. 固体氧化物燃料电池材料及制备[M]. 北京: 科学出版社, 2004: 9–11.
[5] 曹加锋, 朱志文, 刘卫. 钙钛矿结构质子导体基固体氧化物燃料电池电解质研究进展[J]. 硅酸盐学报, 2015, 43(6): 734–740.
CAO Jiafeng, ZHU Zhiwen, LIU Wei. J Chin Ceram, 2015, 43(6): 734–740.
[6] MALAVASI L, FISHER C A, ISLAM M S. Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features[J]. Chem Soc Rev, 2010, 39(11): 4370–4387.
[7] SUNARSO J, HASHIM S S, ZHU N, et al. Perovskite oxides applications in high temperature oxygen separation, solid oxide fuel cell and membrane reactor: A review[J]. Prog Energ Combust, 2017, 61: 57–77.
[8] ATKINSON A, BARNETT S, GORTE R J, et al. Advanced anodes for high-temperature fuel cells[J]. Nat Mater, 2004(3): 17–27.
[9] COWIN P I, PETIT C T, LAN R, et al. Recent progress in the development of anode materials for solid oxide fuel cells[J]. Adv Energy Mater, 2011(1): 314–332.
[10] KILNER J A, BURRIEL M. Materials for intermediate-temperature solid-oxide fuel cells[J]. Ann Rev Mater Res, 2014(44): 365–393.
[11] MAHATO N, BANERJEE A, GUPTA A, et al. Progress in material selection for solid oxide fuel cell technology: A review[J]. Prog Mater Sci, 2015(72): 141–337.
[12] ORERA A, SLATER P. New chemical systems for solid oxide fuel cells[J]. Chem Mater, 2009(22): 675–690.
[13] FERGUS J W. Electrolytes for solid oxide fuel cells[J]. J Power Sources, 2006(162): 30–40.
[14] BADWAL S. Zirconia-based solid electrolytes: microstructure, stability and ionic conductivity[J]. Solid State Ionics, 1992(52): 23–32.
[15] ETSELL T, FLENGAS S N. Electrical properties of solid oxide electrolytes[J]. Chem Rev, 1970(70): 339–376.
[16] 胡敏, 张震宇, 陈涵, 等. 固体氧化物燃料电池用电解质YSZ表面介观结构的修饰[J]. 硅酸盐学报, 2016, 44(4): 498–502.
HU Min, ZHANG Zhenyu, CHEN Han, et al. J Chin Ceram Soc, 2016, 44(4): 489–502.
[17] 韩敏芳, 杨志宾, 刘泽, 等. 亚微米晶粒氧化钇稳定氧化锆电解质的稳定性[J]. 硅酸盐学报, 2010, 38(1): 1–6.
HAN Minfang, YANG Zhibin, LIU Ze, et al. J Chin Ceram Soc, 2010, 38(1): 1–6.
[18] GOODENOUGH J B. Oxide-ion electrolytes[J]. Ann Rev Mater Res, 2003, 33: 91–128.
[19] STEELE B C H. Appraisal of Ce1−yGdyO2−y/2 electrolytes for IT-SOFC operation at 500 ℃[J]. Solid State Ionics, 2000, 129: 95–110.
[20] MOGENSEN M, SAMMES N M, TOMPSETT G A. Physical, chemical and electrochemical properties of pure and doped ceria[J]. Solid State Ionics, 2000, 129: 63–94.
[21] KHARTON V V, FIGUEIREDO F M, NAVARRO L, et al. Ceria-based materials for solid oxide fuel cells[J]. J Mater Sci, 2001, 36: 1105–1117.
[22] WANG S, INABA H, TAGAWA H, et al. Nonstoichiometry of Ce0.9Gd0.1O1.95−x[J]. Solid State Ionics, 1998, 107: 73–79.
[23] IWAHARA H, ESAKA T, SATO T, et al. Formation of high oxide ion conductive phases in the sintered oxides of the system Bi2O3-Ln2O3 (Ln= La,Yb)[J]. J Solid State Chem, 1981, 39: 173–180.
[24] FENG M, GOODENOUGH J. A superior oxide-ion electrolyte[J]. Eur J Solid State Inorg Chem, 1994, 31: 663–672. 
[25] ISHIHARA T, MATSUDA H, TAKITA Y. Doped LaGaO3 perovskite type oxide as a new oxide ionic conductor[J]. J Am Chem Soc, 1994, 116: 3801–3803.
[26] HUANG K, FENG M, GOODENOUGH J B, et al. Electrode performance test on single ceramic fuel cells using as electrolyte Sr-and Mg-doped laGaO3[J]. J Electrochem Soc, 1997, 144: 3620–3624.
[27] HUANG K, TICHY R S, GOODENOUGH J B. Superior perovskite oxide-ion conductor; strontium-and magnesium-doped LaGaO3: I, phase relationships and electrical properties[J]. J Am Ceram Soc, 1998, 81: 2565–2575.
[28] 史可顺. 中温固体氧化物燃料电池电解质材料及其制备工艺的研究发展趋势[J]. 硅酸盐学报, 2008, 36(11): 1676–1688.
SHI Keshun. J Chin Ceram Soc, 2008, 36(11): 1676–1688.
[29] 黄贤良, 赵海雷, 吴卫江, 等. 固体氧化物燃料电池阳极材料的研究进展[J]. 硅酸盐学报, 2005, 33(11): 109–115.
HUANG Xianliang, ZHAO Hailei, WU Weijiang, et al. J Chin Ceram Soc, 2005, 33(11): 109–115.
[30] 汪峰, 缪馥星, 官万兵. 不同还原条件下制备的固体氧化物燃料电池支撑阳极Ni-YSZ的性能[J]. 硅酸盐学报, 2015, 43(5): 650–656.
WANG Feng, MIAO Fuxing, GUAN Wanbing. J Chin Ceram Soc, 2015, 43(5): 650–656.
[31] WANG W, SU C, WU Y, et al. Progress in solid oxide fuel cells with nickel-based anodes operating on methane and related fuels[J]. Chem Rev, 2013, 113(10): 8104–8151.
[32] G R T M. Comprehensive review of methane conversion in solid oxide fuel cells: prospects for efficient electricity generation from natural gas[J]. Prog Energ Combust, 2016, 54: 1–64.
[33] BOLDRIN P, RUIZ-TREJO E, MERMELSTEIN J, et al. Strategies for carbon and sulfur tolerant solid oxide fuel cell materials, incorporating lessons from heterogeneous catalysis[J]. Chem Rev, 2016, 116(22): 13633–13684.
[34] SASAKI K, TERAOKA Y. Equilibria in fuel cell gases II. The CHO ternary diagrams[J]. J Electrochem Soc, 2003, 150(7): A885–A888.
[35] HANNA J, LEE W Y, SHI Y, et al. Fundamentals of electro-and thermochemistry in the anode of solid-oxide fuel cells with hydrocarbon and syngas fuels[J]. Prog Energ Combust, 2014, 40: 74–111.
[36] YANG L, CHOI Y, QIN W, et al. Promotion of water-mediated carbon removal by nanostructured barium oxide/nickel interfaces in solid oxide fuel cells[J]. Nat Commun, 2011(2): 357.
[37] 刘珊, 王建新, 何长荣, 等. 电解质支撑电池的NiO-Ce0.9Gd 0.1O1.95阳极的制备及性能[J]. 硅酸盐学报, 2013, 41(8): 1057–1062.
LIU Shan, WANG Jianxin,HE Changrong, et al. J Chin Ceram Soc, 2013, 41(8): 1057–1062.
[38] MCINTOSH S, GORTE R J. Direct Hydrocarbon Solid Oxide Fuel Cells[J]. Chem Rev, 2004, 104(10): 4845–4866.
[39] PARK S, VOHS J M, GORTE R J. Direct oxidation of hydrocarbons in a solid-oxide fuel cell[J]. Nature, 2000, 404(6775): 265–267.
[40] JUNG S, LU C, HE H, et al. Influence of composition and Cu impregnation method on the performance of Cu/CeO2/YSZ SOFC anodes[J]. J Power Sources, 2006, 154(1): 42–50.
[41] SIN A, KOPNIN E, DUBITSKY Y, et al. Performance and life-time behaviour of NiCu–CGO anodes for the direct electro-oxidation of methane in IT-SOFCs[J]. J Power sources, 2007, 164(1): 300–305.
[42] MARINA O A, CANFIELD N L, STEVENSON J W. Thermal, electrical, and electrocatalytical properties of lanthanum-doped strontium titanate[J]. Solid State Ionics, 2002, 149(1): 21–28.
[43] NEAGU D, IRVINE J T. Structure and properties of La0.4Sr0.4TiO3 ceramics for use as anode materials in solid oxide fuel cells[J]. Chem Mater, 2010, 22(17): 5042–5053.
[44] AGUILAR L, ZHA S, CHENG Z, et al. A solid oxide fuel cell operating on hydrogen sulfide (H2S) and sulfur-containing fuels[J]. J Power Sources, 2004, 135(1): 17–24.
[45] CHENG Z, ZHA S, AGUILAR L, et al. Chemical, electrical, and thermal properties of strontium doped lanthanum vanadate[J]. Solid State Ionics, 2005, 176(23): 1921–1928.
[46] TAO S, IRVINE J T. A redox-stable efficient anode for solid-oxide fuel cells[J]. Nat Mater, 2003, 2(5): 320–323.
[47] TAO S, IRVINE J T, KILNER J A. An Efficient Solid Oxide Fuel Cell Based upon Single‐Phase Perovskites[J]. Adv Mater, 2005, 17(14): 1734–1737.
[48] HUANG Y H, DASS R I, XING Z L, et al. Double perovskites as anode materials for solid-oxide fuel cells[J]. Science, 2006(312): 254–257.
[49] HUANG Y H, DASS R I, DENYSZYN J C, et al. Synthesis and characterization of Sr2MgMoO6−δ an anode material for the solid oxide fuel cell[J]. J Electrochem Soc, 2006, 153(7): A1266–A1272.
[50] LIU Q, DONG X, XIAO G, et al. A novel electrode material for symmetrical SOFCs[J]. Adv Mater, 2010(22): 5478–5482.
[51] SU C, WANG W, LIU M, et al. Progress and prospects in symmetrical solid oxide fuel cells with two identical electrodes[J]. Adv Energy Mater, 2015, 5(14): 1500188.
[52] BASTIDAS D M, TAO S, IRVINE J T. A symmetrical solid oxide fuel cell demonstrating redox stable perovskite electrodes[J]. J Mater Chem, 2006, 16(17): 1603–1605.
[53] SENGODAN S, CHOI S, JUN A, et al. Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells[J]. Nat Mater, 2015, 14(2): 205–209.
[54] YANG C, YANG Z, JIN C, et al. Sulfur-Tolerant Redox-Reversible Anode Material for Direct Hydrocarbon Solid Oxide Fuel Cells[J]. Adv Mater, 2012, 24(11): 1439–1443.
[55] YANG Z, XU N, HAN M, et al. Performance evaluation of La0.4Sr0.6Co0.2Fe0.7Nb0.1O3−δ as both anode and cathode material in solid oxide fuel cells[J]. Int J Hydrogen Energ, 2014, 39(14): 7402–7406.
[56] NEAGU D, TSEKOURAS G, MILLER D N, et al. In situ growth of nanoparticles through control of non-stoichiometry[J]. Nat Chem, 2013, 5(11): 916–923.
[57] NEAGU D, OH T S, MILLER D N, et al. Nano-socketed nickel particles with enhanced coking resistance grown in situ by redox exsolution[J]. Nat Commun, 2015(6): 8120.
[58] DU Z, ZHAO H, YI S, et al. High-performance anode material Sr2FeMo0.65Ni0.35O6−δ with in situ exsolved nanoparticle catalyst[J]. ACS Nano, 2016, 10(9): 8660–8669.
[59] MADSEN B, KOBSIRIPHAT W, WANG Y, et al. Nucleation of nanometer-scale electrocatalyst particles in solid oxide fuel cell anodes[J]. J Power Sources, 2007, 166(7): 64–67.
[60] KOBSIRIPHAT W, MADSEN B, WANG Y, et al. La0.8Sr0.2Cr1−x RuxO3−δ–Gd0.1Ce0.9O1.95 solid oxide fuel cell anodes: Ru precipitation and electrochemical performance[J]. Solid State Ionics, 2009, 180(2): 257–264.
[61] KOBSIRIPHAT W, MADSEN B, WANG Y, et al. Nickel-and ruthenium-doped lanthanum chromite anodes: effects of nanoscale metal precipitation on solid oxide fuel cell performance[J]. J Electrochem Soc, 2010, 157(2): B279–B284.
[62] BIERSCHENK D M, POTTER-NELSON E, HOEL C, et al. Pd-substituted (La, Sr)CrO3−δ–Ce0.9Gd0.1O2−δ solid oxide fuel cell anodes exhibiting regenerative behavior[J]. J Power Sources, 2011, 196(6): 3089–3094.
[63] YANG C, LI J, LIN Y, et al. In situ fabrication of CoFe alloy nanoparticles structured (Pr0.4Sr0.6)3(Fe0.85Nb0.15)2O7 ceramic anode for direct hydrocarbon solid oxide fuel cells[J]. Nano Energy, 2015, 11: 704–710.
[64] ARRIV C, DELAHAYE T, JOUBERT O, et al. Exsolution of nickel nanoparticles at the surface of a conducting titanate as potential 
hydrogen electrode material for solid oxide electrochemical cells[J]. J Power Sources, 2013, 223: 341–348.
[65] ADLER S B. Factors governing oxygen reduction in solid oxide fuel cell cathodes[J]. Chem Rev, 2004, 104(10): 4791–4844.
[66] LARRAMENDI I R D, ORTIZ-VITORIANO N, BAUTISTA I B D, et al. Designing Perovskite Oxides for Solid Oxide Fuel Cells, in: L PAN, G ZHU (Eds.) Perovskite Materials-Synthesis, Characterisation, Properties, and Applications[M]. Place InTech, Published, 2016: 20.
[67] JACOBSON A J. Materials for solid oxide fuel cells[J]. Chem Mater, 2009, 22(3): 660–674.
[68] PETROV A, KONONCHUK O, ANDREEV A, et al. Crystal structure, electrical and magnetic properties of La1−xSrxCoO3−y[J]. Solid State Ionics, 1995, 80(3/4): 189–199.
[69] CHEN D, CHEN C, BAIYEE Z M, et al. Nonstoichiometric oxides as low-cost and highly-efficient oxygen reduction/evolution catalysts for low-temperature electrochemical devices[J]. Chem Rev, 2015, 115(18): 9869–9921.
[70] SHAO Z, HAILE S M. A high-performance cathode for the next generation of solid-oxide fuel cells[J]. Nature, 2004, 431(7005): 170–173.
[71] ZHOU W, RAN R, SHAO Z. Progress in understanding and development of Ba0.5Sr0.5Co0.8Fe0.2O3−δ-based cathodes for intermediate-temperature solid-oxide fuel cells: a review[J]. J Power Sources, 2009, 192(2): 231–246.
[72] HIBINO T, HASHIMOTO A, INOUE T, et al. A low-operating-temperature solid oxide fuel cell in hydrocarbon-air mixtures[J]. Science, 2000, 288(5473): 2031–2033.
[73] TARANC N A, BURRIEL M, SANTISO J, et al. Advances in layered oxide cathodes for intermediate temperature solid oxide fuel cells[J]. J Mater Chem, 2010, 20(19): 3799–3813.
[74] TASKIN A, LAVROV A, ANDO Y. Achieving fast oxygen diffusion in perovskites by cation ordering[J]. Appl Phys Lett, 2005, 86(9): 091910.
[75] ZHANG K, GE L, RAN R, et al. Synthesis, characterization and evaluation of cation-ordered LnBaCo2O5+δ as materials of oxygen permeation membranes and cathodes of SOFCs[J]. Acta Mater, 2008, 56(17): 4876–4889.
[76] KIM G, WANG S, JACOBSON A, et al. Rapid oxygen ion diffusion and surface exchange kinetics in PrBaCo2O5+x with a perovskite related structure and ordered A cations[J]. J Mater Chem, 2007, 17(24): 2500–2505.
[77] XIAO G, LIU Q, WANG S, et al. Synthesis and characterization of Mo-doped SrFeO3−δ as cathode materials for solid oxide fuel cells[J]. J Power Sources, 2012, 202: 63–69.
[78] 谢志翔, 赵海雷, 周雄, 等. 固体氧化物燃料电池双钙钛矿型电极材料的研究进展[J]. 硅酸盐学报, 2010, 38(6): 1140–1144.
XIE Zhixiang, ZHAO Hailei, ZHOU Xiong, et al. J Chin Ceram Soc, 2010, 38(6): 1140–1144.
[79] HERN NDEZ A M, MOGNI L, CANEIRO A. La2NiO4+δ as cathode for SOFC: Reactivity study with YSZ and CGO electrolytes[J]. Int J Hydrogen Energ, 2010, 35(11): 6031–6036.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com