首页期刊信息编委及顾问期刊发行联系方式使用帮助留言板ENGLISH
位置:首页 >> 正文
太阳能光电、光热转换材料的研究现状与进展
作者:  代蓓蓓 于佳玉     
单位:北京航空航天大学物理学院太阳能物理实验室 北京 100191 
关键词:太阳能 光伏电池 太阳能聚焦热发电 太阳光谱选择性吸收涂层 
分类号:TK519
出版年,卷(期):页码:2017,45(11):0-0
DOI:10.14062/j.issn.0454-5648.2017.11.03
摘要:
重点探讨了太阳能光电、光热转换技术领域的材料研究现状与发展,主要包括光伏电池半导体材料和太阳光谱选择
性吸收涂层光学材料膜系。太阳电池材料的关键问题还是成本与光电转换效率,钙钛矿太阳电池的研究成为光伏电池新的研
究热点。太阳光谱选择性吸收涂层是太阳能光热利用领域的核心材料技术之一。近年来,太阳能的中高温热利用,尤其是聚
焦热发电技术,作为与光伏发电平行的另一种主流太阳能发电方式,成为人们日益关注的焦点。另外,还阐述了中高温太阳
光谱选择性吸收涂层在国内外的研究成果和最新进展。
The research status and advance of solar photovoltaic materials and photothermal conversion materials, which mean
semiconductor solar cell materials and solar spectral selective absorbing coatings, were reviewed. The main problems of solar cell
materials are cost and photoelectric conversion efficiency (PCE). The investigation of perovskite solar cell becomes a new research
hotspot. On the other hand, solar selective absorbing coating is one of the key material technologies of solar thermal utilization. In
recent years, medium-high temperature heat utilization of solar energy, especially the technology for concentrated solar power (CSP)
as another mainstream of solar energy generation, is becoming a focusing in parallel with photovoltaic power generation. Thus this
paper also talks about the research results and recent development of high temperature solar selective absorbing coatings as an
important content.
基金项目:
国家自然科学基金重点项目(51732001);国家自然科学基金 面上项目(51572010);中央高校基本科研业务费。
作者简介:
王 聪(1966—),男,博士,教授
参考文献:
[1] 王晓宇, 李华芳, 王金良, 等. 利用铜纳米颗粒提高太阳能电池效率 [J]. 硅酸盐学报, 2017, 45(4): 490–494.
WANG Xiaoyu, LI Huafang, WANG Jinliang, et al. J Chin Ceram Soc, 2017, 45(4): 490–494.
[2] SHOCKLEY W, QUEISSER H J. Detailed balance limit of efficiency of p-n junction solar cells [J]. J Appl Phys, 1961, 32(3): 510–519.
[3] MEKEMECHE A, BEGHDAD M, BELARBI M, et al. Two dimensional device simulation and performance optimization of n-type silicon solar cell structure using PC2D [J]. Sol Energy, 2017, 146: 119–124.
[4] 蒋玉荣, 秦瑞平, 常方高, 等. 硅纳米线阵列的制备及光伏性能 [J]. 硅酸盐学报, 2013, 41(1): 29–33.
JIANG Yurong, QIN Ruiping, CHANG Fanggao, et al. J Chin Ceram Soc, 2013, 41(1): 29–33.
[5] ŠÁLY V, PERN M, JANÍ E K F, et al. Impedance spectroscopy of heterojunction solar cell a-SiC/c-Si with ITO antireflection film investigated at different temperatures [J]. J Phys, 2017, 829(1): 012019.
[6] TAN X Y, YAN W S, TU Y T, et al. Small pyramidal textured ultrathin crystalline silicon solar cells with double-layer passivation [J]. Opt Express, 2017, 25(13): 14725–14731.
[7] UZUM A, ITO S, DHAMRIN M, et al. Non-vacuum process for production of crystalline silicon solar cells [M]. New Res Silicon-Struct Prop, Technol, 2017: 83–123.
[8] 王强. 低缺陷密度大单晶比例太阳能级类单晶硅锭制备及其表面制绒研究 [D]. 苏州: 苏州大学, 2016.
WANG Qiang. Low defect density quasi-crystal silicon ingots with large percentage of single crystal fabrication and its surface nano-texture method study (in Chinese, dissertation). Suzhou: Suzhou University, 2016.
[9] YOSHINAGA S, ISHIKAWA Y, ARAKI S, et al. Numerical analysis of monocrystalline silicon solar cells with fine nanoimprinted textured surface [J]. Jpn J Appl Phys, 2017, 56(2): 022301.
[10] KUNG C Y, YANG C H, HUANG C W, et al. Performance improvement of high efficiency mono-crystalline silicon solar cells by modifying rear-side morphology [J]. Appl Sci, 2017, 7(4): 410.
[11] 殷志刚. 太阳能光伏发电材料的发展现状 [J]. 可再生能源, 2008, 26(5): 17–20.
YIN Zhigang. Renew Energy Res (in Chinese), 2008, 26(5): 17–20.
[12] YANG Xinbo, WEBER K, HAMEIRI Z, et al. Industrially feasible, dopant-free, carrier-selective contacts for high-efficiency silicon solar cells [J]. Prog Photovolt Res Appl, 2017, 25(11): 896–904.
[13] JIANG Y, SHEN H, PU T, et al. High efficiency multi-crystalline silicon solar cell with inverted pyramid nanostructure [J]. Sol Energy, 2017, 142: 91–96.
[14] 李峰. 德研发出转换率逾20%的多晶硅太阳能电池 [J]. 功能材料信息, 2004(3): 63–63.
LI Feng. Funct Mater Inf (in Chinese), 2004(3): 63–63.
[15] 窦海林, 王波, 张靖宇, 等. 太阳能光伏发电材料研究进展 [J]. 现代制造技术与装备, 2016, 241(12): 46–48.
DOU Hailin, WANG Bo, ZHANG Jingyu, et al. Mod Manuf Technol Equip (in Chinese), 2016, 241(12): 46–48.
[16] BELLANGER P, TRAORÉ M, SUNIL B S, et al. Polycrystalline silicon films obtained by crystallization of amorphous silicon on aluminium based substrates for photovoltaic applications [J]. Thin Solid Films, 2017, 636(8): 150–157.
[17] KRAJANGSANG T, INTHISANG S, SRITHARATHIKHUN J, et al. An intrinsic amorphous silicon oxide and amorphous silicon stack passivation layer for crystalline silicon heterojunction solar cells [J]. Thin Solid Films, 2017, 628(8): 150–157.
[18] FERHATI H, DIEFFAL F, SRAIRI F. Enhancement of the absorbance figure of merit in amorphous-silicon p-i-n solar cell by using optimized intermediate metallic layers [J]. Opt Int J Light Electron Opt, 2017, 130: 473–480.
[19] CHOWDHURY A, MUKHOPADHYAY S, RAY S. Fabrication of thin film nanocrystalline silicon solar cell with low light-induced degradation [J]. Sol Energy Mater Sol Cells, 2009, 93(5): 597–603.
[20] HONG A J, HOPSTAKEN M J, KIM J, et al. Buffer layer for high performing and low light degraded solar cells [P]. US Patent, 9306107. 2016–4–5.
[21] HAMAKAWA Y. Thin-film solar cells: next generation photovoltaics and its applications [M]. Phys Status Solidi, 2004, 194(1): 55–67.
[22] LIN J C, HO W J, LIU J J, et al. High-efficiency single-junction GaAs solar cell using ITO-film as an antireflection and passivation layer deposited on AlInP layer by thermally RF sputtering [C]. CLEO: QELS_Fundam Sci Opt Soc Am, 2017, 5: 121.
[23] ZHENG Y, YI T C, WANG J L, et al. Radiation damage analysis of individual subcells for GaInP/GaAs/Ge solar cells using photoluminescence measurements [J]. Chin Phys Lett, 2017(2): 63–66.
[24] GREEN M A, EMERY K. HISHIKAWA Y, et al. Solar cell efficiency tables (version 45) [J]. Prog Photovoltaics, 2015, 23(1): 1–9.
[25] SULTANA R S, BAHAR A N, ASADUZZAMAN M, et al. Numerical dataset for analyzing the performance of a highly efficient ultrathin film CdTe solar cell [J]. Data in Brief, 2017, 12: 336–340.
[26] 国家发展改革委, 国家能源局. 国家发展改革委 国家能源局关于印发《能源技术革命创新行动计划(2016-2030年)》的通知[EB/OL]. [2016-06-01]. http://www.nea.gov.cn/2016-06/01/c_135404377.html.
[27] JACKSON P, HARISKOS D, LOTTER E, et al. New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20% [J]. Prog Photovolt, 2011, 19(7): 894–897.
[28] MORADI M, TEIMOURI R, SAADAT M, et al. Buffer layer replacement: A method for increasing the conversion efficiency of CIGS thin film solar cells [J]. Opt Int J Light Electron Opt, 2017, 136: 222–227.
[29] ASADUZZAMAN M, HASAN M, BAHAR A N. An investigation into the effects of band gap and doping concentration on Cu (In,Ga) Se2 solar cell efficiency [J]. Springer plus, 2016, 5(1): 1–8.
[30] 马光耀, 康志君, 谢元锋. 铜铟镓硒薄膜太阳电池的研究进展及发展前景 [J]. 金属功能材料, 2009, 16(5): 46–49.
MA Guangyao, KANG Zhijun, XIE Yuanfeng. Metall Funct Mater (in Chinese), 2009, 16(5): 46–49.
[31] 陈秀娟. CIGS薄膜太阳电池的γ射线辐照特性测试与分析 [D]. 天津: 南开大学, 2012.
CHEN Xiujuan. Test and analysis of gamma ray irradiation characteristics of CIGS thin-film solar cells (in Chinese, dissertation). Tianjin: Nankai University, 2012.
[32] 季鑫. 全溅射法CuInSe2太阳能电池的制备、硒化机制和光电机理研究 [D]. 上海: 上海大学, 2016.
JI Xin. The research of the preparation, selenizated and photoelectrical mechanism of CuInSe2 thin film solar cell prepared by whole magnetron sputtering (in Chinese, dissertation). Shanghai: Shanghai University, 2016.
[33] 王兴孔. CuInSe2薄膜太阳电池 [J]. 青岛大学学报: 自然科学版, 2000(3): 85–88.
WANG Xingkong. CuInSe2 thin film solar cell [J]. J Qingdao Univ(in Chinese), 2000(3): 85–88.
[34] KATAGIRI H, SASAGUCHI N, HOSHINO S, et al. Preparation and evaluation of Cu2ZnSnS4 thin films by sulfurization of E-B evaporated precursors [J]. Sol Energy Mater Sol Cells, 1997, 49(1/4): 407–414.
[35] WOO K, KIM Y, MOON J. A non-toxic, solution-processed, earth abundant absorbing layer for thin-film solar cells [J]. Energ Environ Sci, 2012, 5(1): 5340–5345.
[36] EBERSPACHER C, PAULS K, SERRA J. Nonvacuum techniques for fabricating thin-film CIGS [C] Photovoltaic Specialists Conference, 2000. Conference Record of the Twenty-Eighth IEEE. IEEE, 2000: 517–520.
[37] KAPUR V K, FISHER M, ROE R. Fabrication of light weight flexible CIGS solar cells for space power applications [J]. Mrs Online Proceedings Library Archive, 2001, 668: H3.5.1–H3.5.6.
[38] WANG W, WINKLER M T, GUNAWAN O, et al. Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency [J]. Adv Energy Mater, 2014, 4(7): 13014651.
[39] OREGAN B, GRATZEL M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films [J]. Nature, 1991, 353(6346): 737–740.
[40] 孟庆波, 孙惠成, 罗艳虹, 等. 染料敏化太阳电池基础研究及产业化新进展 [J]. 硅酸盐学报, 2011, 39(7): 1045–2011.
MENG Qingbo, SUN Huicheng, LUO Yanhong, et al. J Chin Ceram Soc, 2011, 39(7): 1045–2011.
[41] CHEN X, ZHAO F, LIU W, et al. Facile synthesis of NiS/graphene composite with high catalytic activity for high-efficiency dye-sensitized solar cells [J]. J Solid State Electrochem, 2017, 21(10): 2799–2805.
[42] FAN K, YU J, HO W K. Improving photoanodes to obtain highly efficient dye-sensitized solar cells: a brief review [J]. Mater Horizons, 2017, 4(3): 319–344.
[43] MATHEW S, YELLA A, GAO P, et al. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers [J]. Nat Chem, 2014, 6(3): 242–247.
[44] 刘志洋, 彭瑞祥, 艾玲, 等. 高效率有机太阳电池的界面工程研究 [J]. 高分子通报, 2017(2): 1–8.
LIU Zhiyang, PENG Ruixiang, AI Ling, et al. Chin Polym Bull (in Chinese), 2017(2): 1–8.
[45] ZHENG Z, AWARTANI O M, GAUTAM B, et al. Efficient charge transfer and fine-tuned energy level alignment in a THF-processed fullerene-free organic solar cell with 11.3% efficiency [J]. Adv Mater, 2016, 29(5): 1604241.
[46] 科苑. 我国可溶性有机小分子太阳电池研究获进展 [J]. 军民两用技术与产品, 2017(3): 35–35.
KE Wan. Dual Use Technol Prod, 2017(3): 35–35.
[47] GUO Y, LEI H, XIONG L, et al. Single phase, high hole mobility Cu2O film as efficient and robust hole transporting layer for organic solar cells [J]. J Mater Chem A, 2017, 5(22): 11055–11062.
[48] 张昱. 基于氟取代BT和BTA有机光伏材料合成与表征 [D]. 大连: 大连理工大学, 2015.
ZHANG Yu. Synthesis and characterizations of organic photovoltaic materials based on fluoro-substituted BT and BTA(in Chinese, dissertation). Dalian: Dalian University of Technology, 2015.
[49] KROTO H W, HEATH J R, BRIEN S C O, et al. C60: Buckminster fullerene [J]. Nature, 1985, 318 (6042): 162–163.
[50] KALLMANN H, POPE M. Photovoltaic effect in organic crystals [J]. J Chem Phys, 1959, 30(2): 585–586.
[51] YOU J, DOU L, YOSHIMURA K, et al. A polymer tandem solar cell with 10.6% power conversion efficiency [J]. Nat Commun, 2013, 4: 1446.
[52] LUO P, XIA W, ZHOU S, et al. Solvent engineering for ambient-air-processed, phase-stable CsPbI3 in perovskite solar cells [J]. J Phys Chem Lett, 2016, 7(18): 3603–3610.
[53] ZHAO Y, LIU B, YU Z L, et al. Strong ferroelectric polarization of CH3NH3GeI3 with high-absorption and mobility transport anisotropy: Theoretical study [J]. J Mater Chem C, 2017(5): 5356–5364.
[54] National Renewable Energy Laboratory(NREL). Research cell efficiency records [DB/OL]. [2017-03-02]. http://www.nrel.gov/ncpv/ images/efficiencychart.jpg.
[55] LUO L, MEN L, LIU Z, et al. Ultrafast terahertz snapshots of excitonic Rydberg states and electronic coherence in an organometal halide perovskite [J]. Nat Commun, 2017, 8: 15565.
[56] MIYASAKA T, KOJIMA A, TESHIMA K. Lead halide perovskites as quantum dot sensitizers for mesoscopic TiO2 photovoltaic cells [C]. Electrochem Soc, 2009(9): 742–742.
[57] MING W, SHI H, DU M H. Large dielectric constant, high acceptor density, and deep electron traps in perovskite solar cell material CsGeI3 [J]. J Mater Chem A, 2016, 4(36): 13852–13858.
[58] National Renewable Energy Laboratory(NREL). Perovskite solar cells [EB/OL]. [2017-6-12]. https://www.nrel.gov/pv/perovskite-solar-cells.html.
[59] 郭立雪, 田建军, 曹国忠, 等. Ag@TiO2纳米颗粒等离激元效应增强钙钛矿太阳能薄膜电池性能 [J]. 硅酸盐学报, 2016, 44(10): 1393–1400. 
GUO Lixue, TIAN Jianjun, CAO Guozhong, et al. J Chin Ceram Soc, 2016, 44(10): 1393–1400.
[60] XIAO Z G, BI C, SHAO Y C, et al. Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers [J]. Energy Environ Sci, 2014, 7: 2619–2623.
[61] LIU M, JOHNSTON M B, SNAITH H J. Efficient planar heterojunction perovskite solar cells by vapour deposition [J]. Nature, 2015, 501: 395.
[62] BURSCHKA J, PELLET N, MOON S J, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells [J]. Nature, 2013, 499(7458): 316–320.
[63] BI D, GAO P, SCOPELLITI R, et al. High-performance perovskite solar cells with enhanced environmental stability based on amphiphile-modified CH3NH3PbI3 [J]. Adv Mater, 2016, 28(15): 2910–2915.
[64] CHEN Y, SUN Y, PENG J, et al. Tailoring organic cation of 2D air-stable organometal halide perovskites for highly efficient planar solar cells [J]. Adv Energy Mater, 2017, 7(18): 1700162.
[65] ZIMMERMANN I, MOSCONI E, LEE X, et al. One-Year stable perovskite solar cells by 2D/3D interface engineering [J]. Nat Commun, 2017, 8: 15684.
[66] SONG Z, ABATE A, WATTHAGE S C, et al. Perovskite solar cell stability in humid air: partially reversible phase transitions in the PbI2-CH3NH3I-H2O system [J]. Adv Energy Mater, 2016, 6(19): 1600846.
[67] NAM J K, CHAI S U, CHA W, et al. Potassium incorporation for enhanced performance and stability of fully inorganic cesium lead halide perovskite solar cells [J]. Nano Lett, 2017, 17(3): 2028–2033.
[68] 李荣荣, 边志坚, 丁占来, 等. 柔性薄膜太阳电池的研究进展 [J]. 硅酸盐学报, 2014, 42(7): 878–885.
LI Rongrong, BIAN Zhijian, DING Zhanlai, et al. J Chin Ceram Soc, 2014, 42(7): 878–885.
[69] CHANDRASEKHAR P S, VAMSI K K. Graphene/ZnO nanocomposite as an electron transport layer for perovskite solar cells; the effect of graphene concentration on photovoltaic performance [J]. R Soc Chem, 2017, 7(46): 28610–28615.
[70] FENG L. Quantum dot-sensitized solar cells [J]. Prog Chem, 2013, 25(2–3): 409–418.
[71] DU J, DU Z, HU J S, et al. Zn-Cu-In-Se quantum dot solar cells with a certified power conversion efficiency of 11.6% [J]. J Am Chem Soc, 2016, 138(12): 4201–4209.
[72] SWARNKAR A, MARSHALL A R, CHAKRABARTI T. Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics [J]. Science, 2016, 354(6308): 92–95.
[73] KWAK G Y, LEE S H, JANG J S, et al. Band engineering of a Si quantum dot solar cell by modification of B-doping profile [J].Sol Energy Mater Sol Cells, 2017, 159: 80–85.
[74] 张敏, 王宏伟, 齐庆杰, 等. Cu2ZnSnS4纳米片阵列在量子点敏化太阳电池对电极中的应用 [J]. 硅酸盐学报, 2017, 45(4): 478–482.
ZHANG Min, WANG Hongwei, QI Qingjie, et al. J Chin Ceram Soc, 2017, 45(4): 478–482.
[75] TABOR H. Selective radiation. I. wavelength discrimination. II. wavefront discrimination [J]. Bull Res Counc Isr Sect C, 1956, 5a(2): 119–134.
[76] ZHANG Q C, ZHAO K, ZHANG B C, et al. New cermet solar coatings for solar thermal electricity applications [J]. Sol Energy, 1998, 64(1–3): 109–114.
[77] 史月艳, 那鸿悦. 太阳光谱选择性吸收膜系设计、制备及测评 [M]. 北京: 清华大学出版社, 2009.
[78] SELVAKUMAR N, BARSHILIA H C. Review of physical vapor deposited (PVD) spectrally selective coatings for mid- and high-temperature solar thermal applications [J]. Sol Energy Mater Sol Cells, 2012, 98(5): 1–23.
[79] ZHANG Q C, MILLS D R. Very low-emittance solar selective surfaces using new film structures [J]. J Appl Phys, 1992, 72(7): 3013–3021.
[80] ANDERSSON A, HUNDERI O, GRANQVIST C G. Nickel pigmented anodic aluminum oxide for selective absorption of solar energy [J]. J Appl Phys, 1980, 51(1): 754–764.
[81] BORN M, WOLF E. Principles of Optics [M]. Pergamon, 1959.
[82] ZHANG K, HAO L, DU M, et al. A review on thermal stability and high temperature induced ageing mechanisms of solar absorber coatings [J]. Renew Sust Energy Rev, 2017, 67: 1282–1299.
[83] GAOUYAT L, MIRABELLA F, DEPARIS O. Critical tuning of magnetron sputtering process parameters for optimized solar selective absorption of NiCrOx, cermet coatings on aluminium substrate [J]. Appl Surf Sci, 2013, 271(8): 113–117. 
[84] SIBIN K P, JOHN S, BARSHILIA H C. Control of thermal emittance of stainless steel using sputtered tungsten thin films for solar thermal power applications [J]. Sol Energy Mater Sol Cells, 2015, 133: 1–7.
[85] REBOUTA L, SOUSA A, CAPELA P, et al. Solar selective absorbers based on Al2O3 : W cermets and AlSiN/AlSiON layers [J]. Sol Energy Mater Sol Cells, 2015, 137: 93–100. 
[86] XU X H, RAO Z G, WU J F, et al. In-situ synthesis and thermal shock resistance of cordierite/silicon carbide composites used for solar absorber coating [J]. Sol Energy Mater Sol Cells, 2014, 130: 257–263.
[87] NURU Z Y, ARENDSE C J, MULLER T F, et al. Thermal stability of electron beam evaporated AlxOy/Pt/AlxOy, multilayer solar absorber coatings [J]. Sol Energy Mater Sol Cells, 2014, 120(1): 473–480. 
[88] GONG D, LIU H, LUO G, et al. Thermal aging test of AlCrNO-based solar selective absorbing coatings prepared by cathodic arc plating [J]. Sol Energy Mater Sol Cells, 2015, 136: 167–171.
[89] SÁNCHEZ-CRUCES E, BARRERA-CALVA E, LAVANDEROS K, et al. Life cycle analysis (lca) of solar selective thin films by electrodeposition and by sol-gel techniques [J]. Energy Procedia, 2014, 57: 2812–2818. 
[90] TULCHINSKY D, UVAROV V, POPOV I, et al. A novel non-selective coating material for solar thermal potential application formed by reaction between sol–gel titania and copper manganese spinel [J]. Sol Energy Mater Sol Cells, 2014, 120(1): 23–29.
[91] AMRI A, JIANG Z T, PRYOR T, et al. Developments in the synthesis of flat plate solar selective absorber materials via sol–gel methods: A review [J]. Renew Sust Energ Rev, 2014, 36: 316–328. 
[92] LANXNER M, ELGAT Z. Solar selective absorber coating for high service temperatures, produced by plasma sputtering[A]// Proceedings of SPIE [C]. The Hague: The International Society for Optical Engineering, 1990: 240–249.
[93] FAROOQ M, GREEN A A, HUTCHINS M G. High performance sputtered Ni: SiO2, composite solar absorber surfaces [J]. Sol Energy Mater Sol Cells, 1998, 54(1–4): 67–73.
[94] FAROOQ M, HUTCHINS M G. Optical properties of higher and lower refractive index composites in solar selective coatings [J]. Sol Energy Mater Sol Cells, 2002, 71(1): 73–83. 
[95] TEIXEIRA V, SOUSA E, COSTA M F, et al. Chromium-based thin sputtered composite coatings for solar thermal collectors [J]. Vacuum, 2002, 64(3/4): 299–305. 
[96] TEIXEIRA V, SOUSA E, COSTA M F, et al. Spectrally selective composite coatings of Cr–Cr2O3, and Mo–Al2O3, for solar energy applications [J]. Thin Solid Films, 2001, 392(2): 320–326.
[97] NUNES C, TEIXEIRA V, COLLARES-PEREIRA M, et al. Deposition of PVD solar absorber coatings for high-efficiency thermal collectors [J]. Vacuum, 2002, 67(3/4): 623–627.
[98] NUNES C, TEIXEIRA V, PRATES M L, et al. Graded selective coatings based on chromium and titanium oxynitride [J]. Thin Solid Films, 2003, 442(1/2): 173–178. 
[99] KADIRGAN F, SÖHMEN M, ?.E. TÜRE, et al. An investigation on the optimisation of electrochemically pigmented aluminium oxide selective collector coatings [J]. Renew Energ, 1997, 10(2–3): 203–206. 
[100] SCHÜLER A, DUTTA D, CHAMBRIER E D, et al. Sol–gel deposition and optical characterization of multilayered SiO2/Ti1− xSixO2, coatings on solar collector glasses [J]. Sol Energy Mater Sol Cells, 2006, 90(17): 2894–2907. 
[101] SCHÜLER A, VIDENOVIC I R. Titanium containing amorphous hydrogenated silicon carbon films (a-Si:C:H/Ti) for durable solar absorber coatings [J]. Sol Energy Mater Sol Cells, 2001, 69(3): 271–284. 
[102] YIN Z, XUE Z, ZHANG J, et al. Graded Al-N/Al absorbing surfaces for all-glass evacuated tubular collectors—R, D and production: bridging the gap [J]. Renew Energ, 1999, 16(1–4): 624–627.
[103] SHEN Y, SHI Y, WANG F. High-temperature optical properties and stability of AlxOy–AlNx –Al solar selective absorbing surface prepared by DC magnetron reactive sputtering [J]. Sol Energy Mater Sol Cells, 2003, 77(4): 393–403.
[104] 谢光明. 光谱选择性吸收涂层 [J]. 太阳能, 1998(3): 14–15.
XIE Guangming. Sol Energy (in Chinese), 1998(3): 14–15.
[15] 陈德明, 徐刚. 太阳能热利用技术概况 [J]. 物理, 2007, 36(11): 840–847.
CHEN Deming, XU Gang. Physics (in Chinese), 2007, 36(11): 840–847.
[106] BARSHILIA H C, SELVAKUMAR N, RAJAM K S, et al. TiAlN∕TiAlON∕Si3N4 tandem absorber for high temperature solar selective applications [J]. Appl Phys Lett, 2006, 89(19): p29. 
[107] BARSHILIA H C, SELVAKUMAR N, RAJAM K S, et al. Spectrally selective NbAlN/NbAlON/Si3N4 tandem absorber for high-temperature solar applications [J]. Sol Energy Mater Sol Cells, 2008, 92(4): 495–504.
[108] CAO F, KRAEMER D, SUN T, et al. Enhanced thermal stability of W-Ni-Al2O3 cermet-based spectrally selective solar absorbers with tungsten infrared reflectors [J]. Adv Energy Mater, 2014, 5(2): 1401042.
[109] CAO F, KRAEMER D, TANG L, et al. A high-performance spectrally-selective solar absorber based on a yttria-stabilized zirconia cermet with high-temperature stability [J]. Energ Environ Sci, 2015, 8(10): 3040–3048.
[110] CAO F, TANG L, LI Y, et al. A high-temperature stable spectrally-selective solar absorber based on cermet of titanium nitride in SiO2, deposited on lanthanum aluminate [J]. Sol Energy Mater Sol Cells, 2017, 160(1): 12–17.
[111] MOON J, LU D, VANSADERS B, et al. High performance multi-scaled nanostructured spectrally selective coating for concentrating solar power [J]. Nano Energy, 2014, 8(9): 238–246.
[112] REBOUTA L, SOUSA A, CAPELA P, et al. Solar selective absorbers based on Al2O3:Wcermets and AlSiN/AlSiON layers [J]. Sol Energy Mater Sol Cells, 2015, 137: 93–100.
[113] KENNEDY C E. Review of mid-to high-temperature solar selective absorber materials[R]. National Renewable Energy Lab, NREL/ TP-520-31267, Golden: National Renewable Energy Lab, 2002: 1–58.
[114] ANTONAIA A, CASTALDO A, ADDONIZIO M L, et al. Stability of W-Al2O3 cermet based solar coating for receiver tube operating at high temperature [J]. Sol Energy Mater Sol Cells, 2010, 94(10): 1604–1611.
[115] PINCH H L, ABELES B, GITTLEMAN J I. Method of making high resistance cermet film[P]. US Patent, 4071426. 1978–1–31.
[116] ZOU C, XIE W, SHAO L. Functional multi-layer solar spectral selective absorbing coatings of AlCrSiN/AlCrSiON/AlCrO for high temperature applications [J]. Sol Energy Mater Sol Cells, 2016, 153: 9–17
[117] LIU Y, WANG C, SUN Y, et al. Optical design and preparation of high performance Mo/NiAlN/NiAlON/SiO2 solar selective absorbing coating [J]. J Chin Ceram Soc, 2015, 43(2): 171–178.
[118] LIU Y, WANG Z, LEI D, et al. A new solar spectral selective absorbing coating of SS–(Fe3O4)/Mo/TiZrN/TiZrON/SiON for high temperature application [J]. Sol Energy Mater Sol Cells, 2014, 127(4): 143–146.
[119] WU Y, WANG C, SUN Y, et al. Optical simulation and experimental optimization of Al/NbMoN/NbMoON/SiO2, solar selective absorbing coatings [J]. Sol Energy Mater Sol Cells, 2015, 134: 373–380.
[120] WU Y, WANG C, SUN Y, et al. Study on the thermal stability of Al/NbTiSiN/NbTiSiON/SiO2, solar selective absorbing coating [J]. Sol Energy, 2015, 119: 18–28.
[121] NING Y, WANG W, WANG L, et al. Optical simulation and preparation of novel Mo/ZrSiN/ZrSiON/SiO2 solar selective absorbing coating [J]. Sol Energy Mater Sol Cells, 2017, 167: 178–183.
[122] WU S, CHENG C H, HSIAO Y J, et al. Fe2O3 films on stainless steel for solar absorbers [J]. Renew Sust Energ Rev, 2016, 58: 574–580.
[123] GAO X H, WANG C B, GUO Z M, et al. Structure, optical properties and thermal stability of Al2O3-WC nanocomposite ceramic spectrally selective solar absorbers [J]. Opt Mater, 2016, 58: 219–225.
[124] GAO X H, GUO Z M, GENG Q F, et al. Structure, optical properties and thermal stability of TiC-based tandem spectrally selective solar absorber coating [J]. Sol Energy Mater Sol Cells, 2016, 157: 543–549.
[125] GAO X H, GUO Z M, GENG Q F, et al. Microstructure, chromaticity and thermal stability of SS/TiC-WC/Al2O3, spectrally selective solar absorbers [J]. Sol Energy Mater Sol Cells, 2017, 164: 63–69.
[126] 郝雷, 王树茂, 蒋利军, 等. 非真空高温太阳光谱选择性吸收涂层的研制 [J]. 科学通报, 2009, 54(2): 251–254.
HAO Lei, WANG Shumao, JIANG Lijun, et al. Chin Sci Bull (in Chinese), 2009, 54(2): 251–254.
[127] DU M, LIU X, HAO L, et al. Microstructure and thermal stability of Al/Ti0.5Al0.5N/Ti0.25Al0.75N/AlN solar selective coating [J]. Sol Energy Mater Sol Cells, 2013, 111(4): 49–56.
[128] ZHANG K, DU M, HAOA L, et al. Highly corrosion resistant and sandwich-like Si3N4/Cr-CrNx/Si3N4 coatings used for solar selective absorbing applications [J]. Acs Appl Mater Inter, 2016, 8(49): 34008.
[129] ZHANG K, HAO L, DU M, et al. A review on thermal stability and high temperature induced ageing mechanisms of solar absorber coatings [J]. Renew Sust Energ Rev, 2017, 67: 1282–1299.
[130] FENG J, ZHANG S, LIU X, et al. Solar selective absorbing coatings TiN/TiSiN/SiN prepared on stainless steel substrates [J]. Vacuum, 2015, 121: 135–141.
[131] FENG J, ZHANG S, LU Y, et al. The spectral selective absorbing characteristics and thermal stability of SS/TiAlN/TiAlSiN/Si3N4, 
tandem absorber prepared by magnetron sputtering [J]. Sol Energy, 2015, 111: 350–356.
[132] WU L, GAO J, LIU Z, et al. Thermal aging characteristics of CrNxOy, solar selective absorber coating for flat plate solar thermal collector applications [J]. Sol Energy Mater Sol Cells, 2013, 114(114): 186–191.
[133] WANG X, GAO J, HU H, et al. High-temperature tolerance in WTi-Al2O3, cermet-based solar selective absorbing coatings with low thermal emissivity [J]. Nano Energy, 2017, 37: 232–241. 
[134] WANG J, WEI B, WEI Q, et al. Optical property and thermal stability of Mo/Mo–SiO2/SiO2 solar-selective coating prepared by magnetron sputtering [J]. Phys Status Solidi, 2011, 208(3): 664–667.
[135] 王健, 陈子君, 李德杰, 等. 基于钼二维表面光栅的高温太阳能选择性吸收表面设计 [J]. 太阳能学报, 2011, 32(7): 1087–1090.
WANG Jian, CHEN Zijun, LI Dejie, et al. Acta Energy Sin (in Chinese), 2011, 32(7): 1087–1090.
[136] YANG R, LIU J, LIN L, et al. Optical properties and thermal stability of colored solar selective absorbing coatings with double-layer antireflection coatings [J]. Sol Energy, 2016, 125: 453–459.
[137] 国家能源局. 太阳能发展“十三五”规划 [J]. 太阳能, 2016, 12: 5–14.
National Energy Administration. Sol Energy (in Chinese), 2016, 12: 5–14. 
[138] 王传东. 热电池发展综述 [J]. 电源技术, 2013, 37(11): 2077–2079.
WANG Chuandong. Chin J Power Sources (in Chinese), 2013, 37(11): 2077–2079.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com