首页期刊信息编委及顾问期刊发行联系方式使用帮助留言板ENGLISH
位置:首页 >> 正文
石灰石粉在水泥基材料中的作用及对其耐久性的影响
作者:史才军 王德辉 贾煌飞 刘剑辉 
单位:湖南大学土木工程学院 长沙 410082 
关键词:水泥基材料 石灰石粉 作用机理 耐久性 
分类号:TQ172
出版年,卷(期):页码:2017,45(11):0-0
DOI:10.14062/j.issn.0454-5648.2017.11.05
摘要:

 作为水泥基材料的矿物掺合料,石灰石粉对它的凝结硬化、微观结构和耐久性能会有显著影响。本文概述了石灰石

粉在水泥基材料中的4 个作用:晶核、填充、化学和稀释作用。在一定的掺量范围内,石灰石粉的粒径越小或者掺量越大,
能加速硅酸盐水泥的水化、改善孔结构和硬化水泥浆体的界面,从而提高基体性能。当石灰石粉粒径较大或者掺量过多时,
石灰石粉反而起稀释作用,降低基体性能。然后基于石灰石粉的4 个作用机理,综述了其对水泥基材料渗透性、碳化性能、
硫酸盐腐蚀、抗冻性、钢筋锈蚀的影响。最后对掺石灰石粉水泥基材料的进一步研究工作提出了建议。

 Limestone powder (LP), as a supplementary cementitious material (SCM), can have a certain influence on the hydration,

microstructure and durability of cement-based materials. This paper reviewed the action mechanism of limestone power in cement-based
materials (i.e., nucleation effect, filler effect, dilution effect and chemical effect). LP accelerates the hydration reaction, improves the pore
structure and ITZ, and enhances the properties of cement-based materials. Instead, LP with larger sizes or excessive additions shows a
dilution effect on the properties of cementitious materials. Moreover, this paper also represented the four action mechanisms of LP for the
durability properties, i.e., permeability, carbonation resistance, sulfate corrosion, frost resistance and reinforcement corrosion. In addition,
further researches on the addition of limestone power into cement-based materials were also proposed.
基金项目:
青年科学基金项目(51608187)
作者简介:
史才军(1964—),博士,教授
参考文献:
[1] KUMAR A, OEY T, FALLA G P, et al. A comparison of intergrinding and blending limestone on reaction and strength evolution in cementitious materials[J]. Constr Build Mater, 2013, 43: 428–435.
[2] VOGLIS N, KAKALI G, CHANIOTAKIS E, et al. Portland-limestone cements. Their properties and hydration compared to those of other composite cements[J]. Cem Concr Compos, 2005, 27(2): 191–196.
[3] Initiative C S. Cement industry energy and CO2 performance: getting the numbers right[J]. World Business Council for Sustainable Development, 2011, DOI:978-3-940388-48-3.
[4] LIU S H, YAN P Y. Summarization of utilization and researches on stone powder used as mineral admixtures in roller compacted concrete[J]. Water Power (in Chinese), 2007, 33(1): 69–71.
[5] LIU S H, YAN P Y. Effect of Limestone Powder on Microstructure of Concrete[J](Eng). J Wuhan Univ Technol, 2010, 25(2): 328–331.
[6] LOTHENBACH B, MATSCHEI T, MOSCHNER G, et al. Thermodynamic modelling of the effect of temperature on the hydration and porosity of Portland cement[J]. Cem Concr Res, 2008, 38(1): 1–18.
[7] WEERDT K D, HAHA M B, SAOUT G L, et al. Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash[J]. Cem Concr Res, 2011. 41(3): 279–291.
[8] LI L G, KWAN A K H. Adding limestone fines as cementitious paste replacement to improve tensile strength, stiffness and durability of concrete[J]. Cem Concr Compos, 2015, 60: 17–24.
[9] LIU S H, YAN P Y, FENG J W. Effect of limestone powder and fly ash on magnesium sulfate resistance of mortar[J](Eng). J Wuhan Univ Technol, 2010, 25(4): 700–703.
[10] FELEKOGLU K T. The effect of C3A content on sulfate durability of Portland limestone cement mortars[J]. Constr Build Mater, 2012, 36(4): 437–447.
[11] BENTZ D P, ARDANI A, BARRETT T, et al. Multi-scale investigation of the performance of limestone in concrete[J]. Constr Build Mater, 2015, 75: 1–10.
[12] CELIK K, MERAL C, GURSEL A P, et al. Mechanical properties, durability, and life-cycle assessment of self-consolidating concrete mixtures made with blended portland cements containing fly ash and limestone powder[J]. Cem Concr Compos, 2015, 56(77): 59–72.
[13] TSIVILIS S, BATIS G, CHANIOTAKIS E, et al. Properties and behavior of limestone cement concrete and mortar[J]. Cem Concr Res, 2000, 30(10): 1679–1683.
[14] LOTHENBACH B, SCRIVENER K, HOOTON R D. Supplementary cementitious materials[J]. Cem Concr Res, 2011, 41(12): 1244–1256.
[15] DESCHNER F, WINNEFELD F, LOTHENBACH B, et al. Hydration of Portland cement with high replacement by siliceous fly ash[J]. Cem Concr Res, 2012, 42(10): 1389–1400.
[16] SCRIVENER K L, LOTHENBACH B, BELIE N D et al. TC 238-SCM: hydration and microstructure of concrete with SCMs[J]. Mater Struct, 2015, 48(4): 835–862.
[17] BERODIER E, SCRIVENER K. Understanding the Filler Effect on the Nucleation and Growth of C-S-H[J]. J Am Ceram Soc, 2014, 97(12): 3764–3773.
[18] SWAMY R N. Cement Replacement Materials[M]. Springer Berlin Heidelberg, 2014.
[19] KAKALI G, TSIVILIS S, AGGELI E, et al. Hydration products of C3A, C3S and Portland cement in the presence of CaCO3[J]. Cem Concr Res, 2000, 30(7): 1073–1077.
[20] LIU S H, YAN P Y. Influence of limestone powder on filling effect of cement paste and pore structure of sand grout[J]. J Chin Ceram Soc, 2008, 36(1): 69–72.
[21] CYR M, LAWRENCE P, RINGOT E. Efficiency of mineral admixtures in mortars: Quantification of the physical and chemical effects of fine admixtures in relation with compressive strength[J]. Cem Concr Res, 2006, 36(2): 264–277.
[22] AQEL M, PANESAR D K. Hydration kinetics and compressive strength of steam-cured cement pastes and mortars containing limestone filler[J]. Constr Build Mater, 2016, 113: 359–368.
[23] SCHUTTER G D. Effect of limestone filler as mineral addition in self-compacting concrete[C]// 36th Conference on Our World in Concrete & Structures: 'Recent Advances in the Technology of Fesh Concrete' (OWIC'S 2011), 2011.
[24] SOROKA I, STERN N. Calcareous fillers and the compressive strength of portland cement[J]. Cem Concr Res, 1976, 6(3): 367-376.
[25] PERA J, HUSSON S, GUILHOT B. Influence of finely ground limestone on cement hydration[J]. Cem Concr Compos, 1999, 21(2): 99–105.
[26] ZHANG C M, RAMACHANDRAN V S. Influence of calcium carbonate as a fine filler on the hydration of tricalcium silicate[J]. J Chin Ceram Soc, 1988, 6(2): 52–57.
[27] BENTZ D P. Modeling the influence of limestone filler on cement hydration using CEMHYD3D[J]. Cem Concr Compos, 2006, 28(2): 124–129.
[28] BONAVETTI V L, RAHHAL V F, IRASSAR E F. Studies on the carboaluminate formation in limestone filler-blended cements[J]. Cem Concr Res, 2001, 31(6): 853–859.
[29] SATO T, DIALLO F. Seeding effect of nano-CaCO3 on the hydration of tricalcium silicate[J]. TRR J, 2010(2141): 61–67.
[30] RODE S, OYABU N, KOBAYASHI K, et al. True atomic-resolution imaging of (1014) calcite in aqueous solution by frequency modulation atomic force microscopy[J]. Langmuir, 2009, 25(5): 2850–2853.
[31] BENTZ D P. Activation energies of high-volume fly ash ternary blends: hydration and setting[J]. Cem Concr Compos, 2014, 53: 214–223.
[32] OEY T, KUMAR A, BULLARD J W, et al. The filler effect: the influence of filler content and surface area on cementitious reaction rates[J]. J Am Ceram Soc, 2013, 96(6): 1978–1990.
[33] THONGSANITGARN P, WONGKEO W, CHAIPANICH A, et al. Heat of hydration of Portland high-calcium fly ash cement incorporating limestone powder: Effect of limestone particle size[J]. Constr Build Mater,2014, 66(36): 410–417.
[34] SENHADJI Y, ESCADEILLAS G, MOULI M, et al. Influence of natural pozzolan, silica fume and limestone fine on strength, acid resistance and microstructure of mortar[J]. Powder Technol, 2014, 254: 314–323.
[35] RAMEZANIANPOUR A A, GHIASVAND E, NICKSERESHT I, et al. Influence of various amounts of limestone powder on performance of Portland limestone cement concretes[J]. Cem Concr Compos, 2009, 31(10): 715–720.
[36] TSIVILIS S, CHANIOTAKIS E, KAKALI G, et al. An analysis of the properties of Portland limestone cements and concrete[J]. Cem Concr Compos, 2002, 24(3–4): 371–378.
[37] VUK T, TINTA V, GABROVSEK R, et al. The effects of limestone addition, clinker type and fineness on properties of Portland cement[J]. Cem Concr Res, 2001, 31(1): 135–139.
[38] SERSALE R. Advances in Portland and blended cements[C]// Int Congr Chem Cem, 9 th, 1992: 261.
[39] ZAJAC M, ROSSBERG A, SAOUT G L, et al. Influence of limestone and anhydrite on the hydration of Portland cements[J]. Cem Concr Compos, 2014. 46(4): 99–108.
[40] WEERDT K D, HAHA M B, SAOUT G L, et al. Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash[J]. Cem Concr Res, 2011. 41(3): 279–291.
[41] ZHANG S H, LU D Y, XU J T, et al. Effects of dolomite and limestone powders on strength and hydration of cement mortars[J]. J Chin Ceram Soc, 2016. 44(8): 1126–1133.
[42] MATSCHEI T, LOTHENBACH B, GLASSER F P. The role of calcium carbonate in cement hydration[J]. Cem Concr Res, 2007. 37(4): 551–558.
[43] COST V. Extending the use of fly ash and slag cement in concrete through the use of portland-limestone cement[C]// Proceedings NRMCA international concrete sustainability conference, 2014.
[44] THONGSANITGARN P, WONGKEO W, CHAIPANICH A, et al. Heat of hydration of Portland high-calcium fly ash cement incorporating limestone powder: Effect of limestone particle size[J]. Constr Build Mater, 2014, 66: 410–417.
[45] MOON J, OH J E, BALONIS M, et al. High pressure study of low compressibility tetracalcium aluminum carbonate hydrates 3CaO· Al2O3·CaCO3·11H2O[J]. Cem Concr Res, 2012, 42(1): 105–110.
[46] CHEN J X, LI H F, CHEN P, et al. Study on super early-strength, high-strength and high-performance concrete containing limestone powder composite admixture[J]. J Chin Ceram Soc, 2007, 26(1): 190–193.
[47] LI B X, CHEN F. Study on the mechanical property of Portlance limestone cement[J]. J Build Mater (in Chinese), 1998(2): 186–191.
[48] SHI C J, LIU H, LI P L, et al. Effects of triisopropanolamine on hydration and microstructure of Portland limestone cement[J]. J Chin Ceram Soc, 2011, 39(10): 1673–1681.
[49] LI Y, DING Q J, HU S G. Utilization of limestone as mineral admixture in cement and concrete[J]. J Wuhan Univ Technol (in Chinese), 2007, 3(3): 35–37.
[50] LU P, LU S B. Effect of calcium carbonate on the hydration of C3S[J]. J Chin Ceram Soc, 1987(4): 289–294.
[51] VANCE K, AGUAYO M, OEY T, et al. Hydration and strength development in ternary portland cement blends containing limestone and fly ash or metakaolin[J]. Cem Concr Compos, 2013, 39(5): 93–103.
[52] DAS S, AGUAYO M, DEY V, et al. The fracture response of blended formulations containing limestone powder: Evaluations using two-parameter fracture model and digital image correlation[J]. Cem Concr Compos, 2014, 53(10): 316–326.
[53] YAN J W, XING J, LI J, et al. Review on limestone powder concrete and sulfate attack on it[J]. Concrete (in Chinese), 2011(8): 79–81.
[54] RAHHAL V, TALERO R. Early hydration of portland cement with crystalline mineral additions[J]. Cem Concr Res, 2005, 35(7): 1285–1291.
[55] TSIVILIS S, CHANIOTAKIS E, KAKALI G, et al. An analysis of the properties of Portland limestone cements and concrete[J]. Cem Concr Compos, 2002, 24(3): 371–378.
[56] MAKHLOUFI Z, AGGOUN S, BENABED B, et al. Effect of magnesium sulfate on the durability of limestone mortars based on quaternary blended cements[J]. Cem Concr Compos, 2016, 65: 186–199.
[57] DEHWAH H A F. Corrosion resistance of self-compacting concrete incorporating quarry dust powder, silica fume and fly ash[J]. Constr Build Mater, 2012, 37(3): 277–282.
[58] GHRICI M, KENAI S, MANSOUR M S. Mechanical properties and durability of mortar and concrete containing natural pozzolana and limestone blended cements[J]. Cem Concr Compos, 2007, 29(7): 542–549.
[59] MEHTA P K, MONTEIRO P J M. Concrete: Microstructure, Properties and Materials[M]. Prentice-Hall, 2006: 499–499.
[60] ATTANAYAKA U, LIANG X, NG S, et al. Penetrating Sealants for Concrete Bridge Decks—Selection Procedure[J]. J Bridge Eng, 2006, 11(11): 533–540.
[61] HEIKAL M, DIDAMONY H E I, MORSY M S. Limestone-filled pozzolanic cement[J]. Cem Concr Res, 2000, 30(11): 1827–1834.
[62] HORNAIN H, MARCHAND J, DUHOT V, et al. Diffusion of chloride ions in limestone filler blended cement pastes and mortars[J]. Cem Concr Res, 1995, 25(8): 1667–1678.
[63] HOBBS M Y. Solubilities and ion exchange properties of solid solutions between the hydroxyl, chlorine and carbon trioxide end members of the monocalcium aluminate hydrates[D]. National Library of Canada=Bibliothèque nationale du Canada, 2001.
[64] BAQUERIZO L G, MATSCHEI T, SCRIVENER K L, et al. Hydration states of AFm cement phases[J]. Cem Concr Res, 2015, 73(24): 143–157.
[65] MEDDAH M S, LMBACHIYA M C, DHIR R K. Potential use of binary and composite limestone cements in concrete production[J]. Constr Build Mater, 2014, 58(4): 193–205.
[66] DHIR R K, LIMBACHIYA M C, MCCARTHY M J, et al. Evaluation of Portland limestone cements for use in concrete construction[J]. Mater Struct, 2007, 40(5): 459–473.
[67] HORNAIN H, MARCHAND J, DUHOT V, et al. Diffusion of chloride ions in limestone filler blended cement pastes and mortars[J]. Cem Concr Res, 1995, 25(95): 1667–1678.
[68] BONAVETTI V, DONZA H, RAHHAL V, et al. Influence of initial curing on the properties of concrete containing limestone blended cement[J]. Cem Concr Res, 2000, 30(5): 703–708.
[69] 乔春雨, 倪文, 王长龙. 水化硅酸钙的合成与水泥化学热力学计 算[J]. 硅酸盐通报, 2013, 32(5): 903–907.
QIAO Chunyu, NI Wen, WANG Changlong. Bull Chin Ceram Soc (in Chinese), 2013, 32(5): 903–907.
[70] PARROTT L J. Some effects of cement and curing upon carbonation and reinforcement corrosion in concrete[J]. Mater Struct, 1996, 29(3): 164–173.
[71] PAJARES I, RAMIREZ S M, VARELA M T B. Evolution of ettringite in presence of carbonate, and silicate ions[J]. Cem Concr Compos, 2003, 25(8): 861–865.
[72] GOLLOP R S, TAYLOR H F W. Microstructural and microanalytical studies of sulfate attack. I. Ordinary portland cement paste[J]. Cem 
Concr Res, 1992, 22(92): 1027–1038.
[73] HEINZ D, URBONAS L. About thaumasite formation in Portland-limestone cement pastes and mortars––effect of heat treatment at 95 °C and storage at 5 ℃[J]. Cem Concr Compos, 2003, 25(8): 961–967.
[74] SHI C J, WANG D H, BEHNOOD A. Review of Thaumasite Sulfate Attack on Cement Mortar and Concrete[J]. J Mater Civil Eng, 2012, 24(12): 1450–1460.
[75] BENSTED J. Thaumasite — background and nature in deterioration of cements, mortars and concretes[J]. Cem Concr Compos, 1999, 21(2): 117–121.
[76] 邓德华, 肖佳, 元强, 等. 石灰石粉对水泥基材料抗硫酸盐侵蚀性的影响[J]. 硅酸盐学报, 2006, 34(10): 1243–1248.
DENG Dehua, XIAO Jia, YUAN Qiang, et al. J Chin Ceram Soc, 2006, 34(10): 1243–1248.
[77] IRASSAR E F, BONAVETTI V L, TREZZA M A, et al. Thaumasite formation in limestone filler cements exposed to sodium sulphate solution at 20 °C[J]. Cem Concr Compos, 2005, 27(1): 77–84.
[78] IRASSAR E F, GONZALEZ M, RAHHAL V. Sulphate resistance of type V cements with limestone filler and natural pozzolana[J]. Cem Concr Compos, 2000, 22(5): 361–368.
[79] PERSSON B. Sulphate resistance of self-compacting concrete[J]. Cem Concr Res, 2003, 33(12): 1933–1938.
[80] 高礼雄, 姚燕, 王玲, 等. 碳硫硅钙石的形成及其对混凝土性能的影响[J]. 建筑材料学报, 2005, 8(4): 431–435.
GAO Lixiong, YAO Yan, WANG Ling, et al. Thaumasite formation and effect on limestone cement concrete[J] (Chn). J Build Mater (in Chinese), 2005, 8(4): 431–435.
[81] RAMEZANIANPOUR A M, HOOTON R D. Thaumasite sulfate attack in Portland and Portland-limestone cement mortars exposed to sulfate solution[J]. Constr Build Mater, 2013, 40(3): 162–173.
[82] GOSPODINOV P, KAZANDJIEV R, MIRONOVA M. The effect of sulfate ion diffusion on the structure of cement stone[J]. Cem Concr Compos, 1996, 18(6): 401–407.
[83] TIXIER R, MOBASHER B. Modeling of Damage in Cement-Based Materials Subjected to External Sulfate Attack. I: Formulation[J]. J Mater Civil Eng, 2003, 15(4): 305–313.
[84] GLASSER F P, MARCHAND J, SAMSON E. Durability of concrete —Degradation phenomena involving detrimental chemical reactions[J]. Cem Concr Res, 2008, 38(2): 226–246.
[85] HUO J F, LI C X, HOU Y L, et al. Effect of Concrete Frost Resistance with Limestone Powder and Silicon Fume[J]. Bull Chin Ceram Soc (in Chinese), 2015, 11, 34: 132–135.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com