首页期刊信息编委及顾问期刊发行联系方式使用帮助留言板ENGLISH
位置:首页 >> 正文
超低水胶比复合胶凝材料孔结构随养护制度和龄期的变化机理
作者:      安明喆 余自若 
单位:北京交通大学土木与建筑工程学院 北京 100044 
关键词:超低水胶比 孔结构 养护制度 水化龄期 水化硅酸钙凝胶 
分类号:TU528.31
出版年,卷(期):页码:2017,45(11):0-0
DOI:10.14062/j.issn.0454-5648.2017.11.10
摘要:

 基于超低水胶比复合胶凝材料早期收缩发展的特殊规律,通过化学结合水和内部湿度测量,初步判断硬化浆体孔结

构的特殊变化;通过压汞法(MIP)和氮吸附法(BET)测量特征龄期硬化浆体的孔结构,揭示了养护条件和水化龄期对超低水胶
比复合胶凝材料早期孔结构的影响规律;并通过扫描电子显微镜和透射电子显微镜深入研究了孔结构变化的微观机理。结果
表明:超低水胶比复合胶凝材料密封养护的早期收缩值大于干燥条件,随着龄期的增加,硬化浆体内部20~30 nm 的凝胶单
元间孔逐渐增大并增多,而早期生成3~12 nm 的凝胶粒子间孔逐渐减少,部分小于3 nm 的凝胶微晶间孔也受到了压缩。这
一作用的驱动力是水化中后期的自干燥作用,水化硅酸钙凝胶在二次水化和后期水化作用下,形成了球状的压缩凝胶单元,
尺寸由50 nm 缩至20~40 nm,引起凝胶粒子间孔的压缩和凝胶单元间孔的增加。孔结构的变化不会显著影响材料的力学性能、
抗渗性能和耐久性能,但改变了硬化浆体的早期收缩发展规律。

 Based on the special rule of early shrinkage of cementitious composites with ultra-low w/b (water-binder) ratio, the

chemical combined water and internal humidity were measured, and the pore structure of hardened slurry was investigated at different
hydration time and curing conditions. The pore structure of hardened slurry at characteristic hydration time was determined by
mercury intrusion porosimetry and BET specific surface area analysis. The microscopic mechanism of pore structure change was
analyzed by scanning electron microscopy and transmission electrom microscopy. The results show that the early shrinkage of
cementitious composites with ultra-low w/b ratio after sealed curing is greater than that of the dry condition. The pores between
20–30 nm in hardened slurry gradually increase, and the pores between 3–12 nm particles gradually reduce with the increase of
hydration time. Some of the inter-crystallite pores (i.e., <3 nm) are also compressed. The driving force is confirmed as a self-drying
effect of hydration in the middle and later stages. CSH gel is compressed to ball-shaped units, which shrink from 50 nm to 20–40 nm.
The shrinkage increases the pores between the gel units, and decreases the pores between the gel particles. The change of pore
structure does not affect the mechanical properties, permeability and durability of hardened cementitious composites, but it changes
the early shrinkage of the hardened slurry.
基金项目:
中央高校基本科研业务费专项资金(2016JBM045);国家自然 科学基金(51408037,51578049);交通运输部应用基础研究 项目(2014319494010);中交集团科技研发(2013-ZJKJ-11)资 助项目。
作者简介:
韩 松(1984—),男,博士,讲师
参考文献:
[1] 刘建忠, 孙伟, 缪昌文, 等. 超高强混凝土用低水胶比浆体的水化热研究[J]. 建筑材料学报, 2010, 13(2): 139–142, 168.
Liu J Z, Sun W, Miao C W, et al. J Build Mater (in Chinese), 2010, 13(2):139–142, 168. 
[2] 肖锐, 邓宗才, 申臣良, 等. 新型超高性能混凝土的抗压性能及其砂浆体的孔结构分析[J]. 湖南科技大学学报: 自然科学版, 2013, 28(1): 44–47.
Xiao R, Deng Z C, Shen C L, et al. J Hunan Univ Sci Technol: Nat Sci Ed (in Chinese), 2013, 28(1): 44–47. 
[3] Chen X, Wu S. Influence of water–to–cement ratio and curing period on pore structure of cement mortar[J]. Construct Build Mater, 2013, 38(6): 804–812.
[4] Rong Z, Sun W, Xiao H, et al. Effects of nano–SiO2 particles on the mechanical and microstructural properties of ultra–high performance cementitious composites[J]. Cem Concr Compos, 2015, 56: 25–31.
[5] Wu Z, Shi C, Khayat K H, et al. Effects of different nanomaterials on hardening and performance of ultra–high strength concrete (UHSC)[J]. Cem Concr Compos, 2016, 70: 24–34.
[6] Rong Z D, Sun W, Xiao H J, et al. Effect of silica fume and fly ash on hydration and microstructure evolution of cement based composites at low water–binder ratios[J]. Construct Build Mater, 2014, 51: 446–450.
[7] 曹世勇. 超高性能水泥基复合材料自收缩特性及其机理研究[J]. 硅酸盐通报, 2015, 34(3): 813–823.
Cao S Y. Bull Chin Ceram Soc (in Chinese), 2015, 34(3): 813–823.
[8] Huang W, Kazemi–Kamyab H, Sun W, et al. Effect of cement substitution by limestone on the hydration and microstructural development of ultra–high performance concrete (UHPC)[J]. Cem Concr Compos, 2017, 77: 86–101.
[9] 段运, 王起才, 张戎令, 等. 不同养护条件下低水胶比混凝土抗氯离子渗透性及孔结构试验研究[J]. 铁道科学与工程学报, 2016, 13(5): 842–847.
Duan Y, Wang Q C, Zhang R L, et al. J Railway Sci Eng (in Chinese), 2016, 13(5): 842–847.
[10] Ba M F, Qian C X, Guo X J, et al. Effects of steam curing on strength and porous structure of concrete with low water/binder ratio[J]. Construct Build Mater, 2011, 25(1): 123–128.
[11] 韩松, 安明喆, 郭瑞, 等. 陶粒内养护高性能混凝土抗裂性能研  究[J]. 建筑材料学报, 2015, 18(5): 742–748.
Han S, An M Z, Guo R, et al. J Build Mater (in Chinese), 2015, 18(5): 742–748.
[12] 韩松, 涂亚秋, 安明喆, 等. 活性粉末混凝土早期收缩发展规律及其控制方法研究[J]. 中国铁道科学, 2015,36(1): 40–47.
Han S, Tu Y Q, An M Z, et al. China Railway Sci (in Chinese), 2015, 36(1): 40–47. 
[13] Wang H, Han S, An M Z, et al. Development of microcosmic study on reactive powder concrete materials[J]. Mater Rev, 2014, 28: 95–53.
[14] 涂亚秋. 活性粉末混凝土收缩影响因素的研究[D]. 北京: 北京交通大学, 2015.
Tu Y Q. The influencing effects of the shrinkage of reactive powder concrete (in Chinese, dissertation). Beijing: Beijing Jiaotong University, 2015.
[15] 张君, 侯东伟, 高原. 混凝土自收缩与干燥收缩的统一内因[J]. 清华大学学报: 自然科学版, 2010, 50( 9): 1321–1324.
Zhang J, Hou D, Gao Y. J Tsinghua Univ: Sci Tech (in Chinese), 2010, 50(9): 1321–1324. 
[16] 李克非, 罗明勇, 庞晓赟, 等. 不同养护条件下水泥基材料的孔隙结构[J]. 建筑材料学报, 2014, 17(2): 187–192.
Li K F, Luo M Y, Pang X Y, et al. J Build Mater (in Chinese), 2014, 17(2): 187–192. 
[17] 罗明勇, 曾强, 庞晓贇, 等. 养护条件对水泥基材料孔隙结构的影响[J]. 硅酸盐学报, 2013, 41(5): 597–604.
Luo M Y, Zeng Q, Pang X Y, et al. J Chin Ceram Soc, 2013, 41(5): 597–604.
[18] Yu R, Spiesz P, Brouwers H J H. Effect of nano–silica on the hydration and microstructure development of ultra–high performance concrete (UHPC) with a low binder amount[J]. Construct Build Mater, 2014, 65(9): 140–150.
[19] Han S, Yan P Y, Liu R G. Study on the hydration product of cement in early age using TEM[J]. Sci China Technol Sci, 2012, 55(8): 2284–2290.
[20] Jennings H M, Balgleish B J, Pratt P L. Morphological development of hydrating tricalcium silicate as examined by electron microscopy techniques[J]. J Am Ceram Soc, 2010, 64(10): 567–572.
[21] 韩松, 阎培渝, 安明喆. 减水剂与低硫酸盐含量水泥的相容性研 究[J]. 硅酸盐学报, 2014, 42(8): 981–988.
Han S, Yan P Y, An M Z. J Chin Ceram Soc, 2014, 42(8): 981–988.
[22] 韩松. 石膏与碱金属硫酸盐对减水剂与水泥相容性的影响机理[D]. 北京: 清华大学, 2012.
Han S. The influencing mechanism of gypsum and alkali sulfate on the compatibility of cement with superplasticizers (in Chinese, dissertation). Beijing: Tsinghua University, 2012.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com