首页期刊信息编委及顾问期刊发行联系方式使用帮助留言板ENGLISH
位置:首页 >> 正文
硫铝酸盐基复合胶凝体系水化性能的温度敏感性
作者:徐玲琳 范胜华 张国防 王培铭 
单位:先进土木工程材料教育部重点实验室 同济大学 上海 201804 
关键词:混合水泥 硫铝酸盐水泥 无水石膏 温度 性能 
分类号:TQ172.75
出版年,卷(期):页码:2017,45(11):0-0
DOI:10.14062/j.issn.0454-5648.2017.11.07
摘要:
研究了5、20 ℃和40 ℃硫铝酸盐水泥熟料-硅酸盐水泥-无水石膏三元体系(简称三元体系)的初凝时间、抗压强度及
水化产物组成。结果表明:源自水化产物的显著差异,所涉硫铝酸盐水泥熟料为主的复合胶凝体系的性能对养护温度的敏感
程度直接取决于初始配合比。与纯硫铝酸盐水泥熟料相比,单掺硅酸盐水泥时水化产物由钙矾石变为水化钙铝黄长石,导致
硬化浆体力学强度显著降低。而单掺无水石膏或复掺无水石膏和硅酸盐水泥时,石膏的掺入促进了钙矾石的生成,有效抑制
了向单硫型水化硫铝酸钙的转变(尤其在高温下),使得高温下的抗压强度略有提升。此外,欲使三元体系在不同养护温度下
的初凝时间变化不大,硅酸盐水泥的掺量需控制在30%以上;要使抗压强度变化不大,石膏掺量宜在25%以上。
The initial setting time, compressive strength development and phase composition of calcium sulfoaluminate (CSA)
clinker-Portland cement-anhydrite ternary system (abbreviation: ternary system) at different temperatures (i.e., 5, 20 and 40 ℃) were
investigated. The results indicate that the temperature sensitivity of the hydration properties of calcium sulfoaluminate cement based
blends depends on the mix proportions, which results from the prominent difference in hydration products. Compared to neat CSA
clinker, the addition of Portland cement enables the main hydrates switching from ettringite to strätlingite, resulting in a decrease of
3-d compressive strength. The addition of anhydrite or together with Portland cement promotes the formation of ettringite, and thus
prohibits the conversion to monosulfate (especially at an elevate temperature), leading to a higher compressive strength at an elevate
temperature. In addition, the dosage of Portland cement in ternary system should exceed 30% to obtain stable initial setting time at
nevertheless low (5 ℃) or elevate temperature (40 ℃). The amount of anhydrite should be greater than 25% to achieve the
comparatively similar 3-d and 28-d compressive strength.
基金项目:
国家自然科学基金(51402216);国家重点研发计划项目 (2016YFC0700905);中德科学中心项目(GZ1290)
作者简介:
徐玲琳(1986—),女,博士,讲师
参考文献:
[1] 苏慕珍, 王燕谋, 张量. 硫铝酸盐水泥[M]. 北京: 北京工业大学出版社, 1999.
[2] PELLETIER-Chaignat L, WINNEFELD F, LOTHENBACH B, et al. Influence of the calcium sulphate source on the hydration mechanism of Portland cement-calcium sulphoaluminate clinker-calcium sulphate binders[J]. Cem Concr Comp, 2011, 33(5): 551–561.
[3] CHAUNASALI P, MONDAL P. Influence of calcium sulfoaluminate (CSA) cement content on expansion and hydration behavior of various ordinary Portland cement‐CSA Blends[J]. J Am Ceram Soc, 2015, 98(8): 2617–2624.
[4] JANOTKA I, KRAJCI L. An experimental study on the upgrade of sulfoaluminate-belite cement systems by blending with Portland cement[J]. Adv Cem Res, 1999, 11(1): 35–41.
[5] JANOTKA I, KRAJCI L, MOJUMDAR S C. Influence of Portland cement addition to sulphoaluminate-belite cement on hydration and mechanical properties of hardened mortars[J]. Cer Silik, 2002, 46(3): 110–116.
[6] JANOTKA I, KRAJCI L, RAY A, et al. The hydration phase and pore structure formation in the blends of sulfoaluminate-belite cement with Portland cement[J]. Cem Concr Res, 2003, 33(4): 489-497.
[7] LE SAOUT G, LOTHENBACH B, HORI A, et al. Hydration of Portland cement with additions of calcium sulfoaluminates[J]. Cem Concr Res, 2013, 43: 81–94.
[8] TRAUCHESSEC R, MECHLING J M, LECOMTE A, et al. Impact of anhydrite proportion in a calcium sulfoaluminate cement and Portland cement blend[J]. Adv Cem Res, 2014, 26(6): 325–333.
[9] TRAUCHESSEC R, MECHLING J M, LECOMTE A, et al. Hydration of ordinary Portland cement and calcium sulfoaluminate cement blends[J]. Cem Concr Comp, 2015, 56: 106–114.
[10] PELLETIER L, WINNEFELD F, LOTHENBACH B. The ternary system Portland cement-calcium sulphoaluminate clinker-anhydrite: Hydration mechanism and mortar properties[J]. Cem Concr Comp, 2010, 32(7): 497–507.
[11] TAYLOR H F W. Cement Chemistry[M]. 2nd Ed. Thomas Telford: London, 1997.
[12] ZHANG Liang. Microstructure and performance of calcium sulfoaluminate cements[D]. University of Aberdeen, Aberdeen, 2000.
[13] ZHANG Liang, GLASSER F P. Hydration products and microstructure of calcium sulfoaluminate cement pastes in different curing regimes[C]. Beijing: 19th international conference on cement chemistry, China, 2015.
[14] AMBROISE J, PERA J. Use of calcium sulfoaluminate cement to improve strength of mortars at low temperature[J]. Concr Repair, Rehabilitation and Retrofitting II, 2009: 325–326, 457.
[15] 沈梅非, 邓中言, 刘克忠. 双快型砂水泥中不同石膏形态的研究[J]. 硅酸盐学报, 1982, 10(3): 298–308.
SHEN Meifei, DENG Zhongyan, LIU Kezhong. J Chin Silic Soc, 1982, 10(3): 298–308.
[16] 王培铭, 李楠, 徐玲琳, 等. 低温养护下硫铝酸盐水泥的水化进程及强度发展[J]. 硅酸盐学报, 2017, 45(2): 242–248.
WANG Peiming, LI Nan, XU Linglin, et al. J Chin Ceram Soc, 2017, 45(2): 242–248.
[17] WINNEFELD F, LOTHENBACH B. Phase equilibria in the system Ca4Al6O12SO4–Ca2SiO4–CaSO4–H2O referring to the hydration of calcium sulfoaluminate cements[J]. RILEM, 2016(1): 10–16.
[18] WINNEFELD F, BARLAG S. Calorimetric and thermogravimetric study on the influence of calcium sulfate on the hydration of ye'elimite[J]. J Therm Anal Calorim, 2010, 101(3): 949–957.
[19] SANTACRUZ I; CUESTA A, DE lA TORRE A G, et al. Structure of stratlingite and effect of hydration methodology on microstructure[J]. Adv Cem Res, 2016, 28(1): 13–22.
[20] PELLETIER L, WINNEFELD F, LOTHENBACH B. The ternary system Portland cement - calcium sulphoaluminate clinker-anhydrite: hydration mechanism and mortar properties[J]. Cem Concr Comp, 2010(32): 497–507.
 
 
碳化混凝土硫酸钠盐结晶破坏
 
刘赞群,候  乐,邓德华,张丰燕,胡文龙
(中南大学土木工程学院,长沙 410075)
 
摘  要:研究了不同水灰比、不同粉煤灰、矿渣掺量混凝土试件快速碳化10 d和20 d后,半浸泡在10%硫酸钠溶液中,在恒温恒湿环境下[(20±1)℃,相对湿度 RH(60±5)%],混凝土试件水分蒸发区的破坏特征及其质量损失率随侵蚀时间的变化规律。结果表明:混凝土碳化深度越大,混凝土破坏越严重;用粉煤灰和矿渣取代水泥加剧混凝土碳化,导致混凝土破坏更严重;碳化混凝土中发生的硫酸钠结晶是混凝土发生破坏的原因。
 
关键词:硫酸盐侵蚀;硫酸盐物理侵蚀;硫酸钠;混凝土碳化
中图分类号:TU528    文献标志码:A    文章编号:0454–5648(2017)11–1621–08
网络出版时间:2017–10–09  13:56:00          网络出版地址:http://kns.cnki.net/kcms/detail/11.2310.TQ.20171009.1356.019.html
 
Sodium Sulfate Salt Crystallization Distress on Carbonated Concrete
 
LIU Zanqun, HOU Le, DENG Dehua, ZHANG Fengyan, HU Wenglong
(School of Civil Engineering, Central South University, Changsha 410075, China)
 
Abstract: Concrete specimens with different water-cement ratios and different dosages of fly ash and slag were carbonated for 10 d and 20 d and then partially exposed into 10% Na2SO4 solution under the condition of (20±1)℃, (60±5)% relative humidity. The mass loss rate of specimen was measured and the visual observation of damaged concrete was compared. The results show that  the concrete carbonation accelerates its failure. The evaporation zone of concrete specimens with fly ash and slag was damaged more severely rather than the ordinary concrete due to the greater carbonation depth. Based on the results by X-ray diffraction, the sodium sulfate crystallization in the carbonated concrete causes the concrete failure.
 
Keywords: sulfate attack on concrete; physical sulfate attack; sodium sulfate, concrete carbonation
 
参考文献:
[1] Haynes H, Bassuoni M T. Physical salt attack on concrete[J]. Concr Int, 2011, 33(11): 38–42.
[2] 邓德华, 刘赞群, Geert D S. 关于“混凝土硫酸盐结晶破坏”理论的研究进展[J]. 硅酸盐学报, 2012, 40(2): 175–185.
DENG Dehua, LIU Zanqun, GEERT D S, et al. J Chin Ceram Soc, 2012, 40(2): 175–185.
[3] 刘赞群, 邓德华, Geert D S, 等. 混凝土硫酸盐结晶破坏微观分析(I)-水泥净浆[J].硅酸盐学报, 2012, 40(2): 186-193. 
LIU Zanqun, DENG Dehua, GEERT D S, et al. J Chin Ceram Soc, 2012, 40(2): 186–193.
[4] 刘赞群, 邓德华, Geert D S, 等. 混凝土硫酸盐结晶破坏微观分析(II)-混凝土[J]. 硅酸盐学报, 2012, 40(5): 631–637.
LIU Zanqun, DENG Dehua, GEERT D S, et al. J Chin Ceram Soc, 2012, 40(5): 631–637.
[5] 刘赞群, 李湘宁, 邓德华, 等. 硫酸铝盐水泥与硅酸盐水泥净浆水分蒸发区硫酸盐破坏对比[J]. 硅酸盐学报, 2016, 44(8): 1181–1185.
LIU Zanqun, LI Xiangning, DENG Dehua, et al. J Chin Ceram Soc, 2016, 44(8): 1181–1185.
[6] Liu Z, Li X, Deng D, et al. The role of Ca(OH)2 in sulfate salt weathering of ordinary concrete[J]. Constr Build Mater, 2016, 123: 127–134.
[7] LIU Z, LI X, DENG D, et al. The damage of calcium sulfoaluminate cement paste partially immersed in MgSO4 solution[J]. Mater Struct, 2016, 49: 719–727.
[8] 刘赞群, 候乐, 邓德华, 等. 硫铝酸盐水泥净浆半浸泡碳酸钠溶液的破坏研究[J]. 硅酸盐学报, 2017, 45(5): 639–643.
LIU Zanqun, HOU Le, DENG Dehua, et al. J Chin Ceram Soc, 2017, 45(5): 639–643.
[9] George W Scherer. Crystallization in pores[J]. Cem Concr Res, 1999, 29(8): 1348–1358.
[10] Ruiz-Agudo E, Mees F, Jacobs P, et al. The role of saline solution properties on porous limestone salt weathering by magnesium and sodium sulfates[J]. Environ Geol, 2007, 52 (2): 305–317.
[11] Skalny J P, Odler I, Marchand J. Sulfate Attack on Concrete[M]. Spon, London, 2001: 2.
[12] George W Scherer. Stress from crystallization of salt[J]. Cem Concr Res, 2004, 34(9): 1613–1624.
[13] 刘赞群. 混凝土硫酸盐侵蚀基本机理研究[D]. 长沙, 中南大学, 2010: 1–2.
LIU Zanqun. Study on the basic mechanism of sulfate attack on concete (in Chinese, dissertation). Changsha, Central South University, 2010: 1–2.
[14] Peter M, Muntean A, Meier S, et al. Competition of several carbonation reactions in concrete: a parametric study[J]. Cem Concr Res, 2008, 38 (12): 1385–1393.
[15] Martínez-Ramírez S, Fernández-Carrasco L. Carbonation of ternary cement systems[J]. Constr Build Mater, 2012, 27(1): 313–318.
[16] Zhou Q, Glasser F. Kinetics and mechanism of the carbonation of ettringite[J]. Adv Cem Res, 2000, 12(3): 131–136.
[17] Castellote M, Andrade C. Modelling the carbonation of cementitious matrixes by means of the unreacted-core model[J]. Cem Concr Res, 2008, 38(12): 1374–1384.
[18] Han J, Pan G, Sun W, et al. Application of nanoindentation to investigate chemomechanical properties change of cement paste in the carbonation reaction[J]. Sci China Technol Sci, 2012, 55(3): 616–622. 
[19] Castellote M, Fernandez L, Andrade C, et al. Chemical changes and phase analysis of OPC pastes carbonated at different CO2 concentrations[J]. Mater Struct, 2009, 42(4): 515–525.
[20] Yoshida N, Matsunami Y, Nagayama M. Salt weathering in residential concrete foundations exposed to sulfate-bearing ground[J]. J Adv Concr Technol, 2010, 8(2): 121–34.
[21] Liu Z, Zhang F, Deng D, et al. Physical sulfate attack on concrete lining–A field case analysis[J]. Case Studies Constr Mater, 2017(6): 206–212.
[22] Borges P H, Costa J O, Milestone N B, et al. Carbonation of CH and C–S–H in composite cement pastes containing high amounts of BFS[J]. Cem Concr Res, 2010, 40(2): 284–292.
[23] Morandeau A., Thiéry M, Dangla P. Impact of accelerated carbonation on OPC cement paste blended with fly ash[J]. Cem Concr Res, 2015, 67: 226–236.
[24] 周万良, 方坤河, 詹炳根. 掺粉煤灰、矿粉混凝土抗碳化性能研  究[J]. 混凝土与水泥制品, 2012(12): 14–19.
ZHOU Wangliang, FANG Kunhe, ZHAN Benggeng. China Concr Cem Prod (in Chinese), 2012(12): 14–19.
[25] Pel L, Huinink H, Kopinga K. Efflorescence pathway diagram: Understanding salt weathering[J]. Constr Build Mater, 2004, 18(5): 309–313.
[26] Pel L, Huinink H, Kopinga K. Ion transport and crystallization in inorganic building materials as studied by nuclear magnetic resonance[J]. Appl Phys Lett, 2002, 81(15): 2893–2895.
[27] Stark D. Performance of Concrete in Sulfate Environments[R]. Portland Cement Association, Skokie, Illinois, USA, 2002: 28.
[28] Irassar E F, Di Maio A, Batic O R. Sulfate attack on concrete with mineral admixtures[J]. Cem Concr Res, 1996, 26(1): 113–123.
[29] Tasdemir C. Combined effects of mineral admixtures and curing conditions on the sorptivity coefficient of concrete[J]. Cem Concr Res, 2003, 33: 1637–1642.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com