首页期刊信息编委及顾问期刊发行联系方式使用帮助留言板ENGLISH
位置:首页 >> 正文
碳化混凝土硫酸钠盐结晶破坏
作者:刘赞群   邓德华 张丰燕 胡文龙 
单位:中南大学土木工程学院 长沙 410075 
关键词:硫酸盐侵蚀 硫酸盐物理侵蚀 硫酸钠 混凝土碳化 
分类号:TU528
出版年,卷(期):页码:2017,45(11):0-0
DOI:10.14062/j.issn.0454-5648.2017.11.08
摘要:
研究了不同水灰比、不同粉煤灰、矿渣掺量混凝土试件快速碳化10 d 和20 d 后,半浸泡在10%硫酸钠溶液中,在
恒温恒湿环境下[(20±1)℃,相对湿度 RH(60±5)%],混凝土试件水分蒸发区的破坏特征及其质量损失率随侵蚀时间的变化规
律。结果表明:混凝土碳化深度越大,混凝土破坏越严重;用粉煤灰和矿渣取代水泥加剧混凝土碳化,导致混凝土破坏更严
重;碳化混凝土中发生的硫酸钠结晶是混凝土发生破坏的原因。
Concrete specimens with different water-cement ratios and different dosages of fly ash and slag were carbonated for 10 d
and 20 d and then partially exposed into 10% Na2SO4 solution under the condition of (20±1)℃, (60±5)% relative humidity. The
mass loss rate of specimen was measured and the visual observation of damaged concrete was compared. The results show that the
concrete carbonation accelerates its failure. The evaporation zone of concrete specimens with fly ash and slag was damaged more
severely rather than the ordinary concrete due to the greater carbonation depth. Based on the results by X-ray diffraction, the sodium
sulfate crystallization in the carbonated concrete causes the concrete failure.
基金项目:
国家自然科学基金项目(51378508)资助项目
作者简介:
刘赞群(1975—),男,博士,教授
参考文献:

[1] Haynes H, Bassuoni M T. Physical salt attack on concrete[J]. Concr Int, 2011, 33(11): 38–42.

[2] 邓德华, 刘赞群, Geert D S. 关于混凝土硫酸盐结晶破坏理论的研究进展[J]. 硅酸盐学报, 2012, 40(2): 175–185.
DENG Dehua, LIU Zanqun, GEERT D S, et al. J Chin Ceram Soc, 2012, 40(2): 175–185.

[3] 刘赞群, 邓德华, Geert D S, . 混凝土硫酸盐结晶破坏微观分析(I)-水泥净浆[J].硅酸盐学报, 2012, 40(2): 186-193.
LIU Zanqun, DENG Dehua, GEERT D S, et al. J Chin Ceram Soc, 2012, 40(2): 186–193.

[4] 刘赞群, 邓德华, Geert D S, . 混凝土硫酸盐结晶破坏微观分析(II)-混凝土[J]. 硅酸盐学报, 2012, 40(5): 631–637.
LIU Zanqun, DENG Dehua, GEERT D S, et al. J Chin Ceram Soc, 2012, 40(5): 631–637.

[5] 刘赞群, 李湘宁, 邓德华, . 硫酸铝盐水泥与硅酸盐水泥净浆水分蒸发区硫酸盐破坏对比[J]. 硅酸盐学报, 2016, 44(8): 11811185.
LIU Zanqun, LI Xiangning, DENG Dehua, et al. J Chin Ceram Soc, 2016, 44(8): 1181–1185.

[6] Liu Z, Li X, Deng D, et al. The role of Ca(OH)2 in sulfate salt weathering of ordinary concrete[J]. Constr Build Mater, 2016, 123: 127–134.

[7] LIU Z, LI X, DENG D, et al. The damage of calcium sulfoaluminate cement paste partially immersed in MgSO4 solution[J]. Mater Struct, 2016, 49: 719–727.

[8] 刘赞群, 候乐, 邓德华, . 硫铝酸盐水泥净浆半浸泡碳酸钠溶液的破坏研究[J]. 硅酸盐学报, 2017, 45(5): 639643.
LIU Zanqun, HOU Le, DENG Dehua, et al. J Chin Ceram Soc, 2017, 45(5): 639643.

[9] George W Scherer. Crystallization in pores[J]. Cem Concr Res, 1999, 29(8): 1348–1358.

[10] Ruiz-Agudo E, Mees F, Jacobs P, et al. The role of saline solution properties on porous limestone salt weathering by magnesium and sodium sulfates[J]. Environ Geol, 2007, 52 (2): 305–317.

[11] Skalny J P, Odler I, Marchand J. Sulfate Attack on Concrete[M]. Spon, London, 2001: 2.

[12] George W Scherer. Stress from crystallization of salt[J]. Cem Concr Res, 2004, 34(9): 1613–1624.

[13] 刘赞群. 混凝土硫酸盐侵蚀基本机理研究[D]. 长沙, 中南大学, 2010: 1–2.
LIU Zanqun. Study on the basic mechanism of sulfate attack on concete (in Chinese, dissertation). Changsha, Central South University, 2010: 1–2.

[14] Peter M, Muntean A, Meier S, et al. Competition of several carbonation reactions in concrete: a parametric study[J]. Cem Concr Res, 2008, 38 (12): 1385–1393.

[15] Martínez-Ramírez S, Fernández-Carrasco L. Carbonation of ternary cement systems[J]. Constr Build Mater, 2012, 27(1): 313–318.

[16] Zhou Q, Glasser F. Kinetics and mechanism of the carbonation of ettringite[J]. Adv Cem Res, 2000, 12(3): 131–136.

[17] Castellote M, Andrade C. Modelling the carbonation of cementitious matrixes by means of the unreacted-core model[J]. Cem Concr Res, 2008, 38(12): 1374–1384.

[18] Han J, Pan G, Sun W, et al. Application of nanoindentation to investigate chemomechanical properties change of cement paste in the carbonation reaction[J]. Sci China Technol Sci, 2012, 55(3): 616–622.

[19] Castellote M, Fernandez L, Andrade C, et al. Chemical changes and phase analysis of OPC pastes carbonated at different CO2 concentrations[J]. Mater Struct, 2009, 42(4): 515–525.

[20] Yoshida N, Matsunami Y, Nagayama M. Salt weathering in residential concrete foundations exposed to sulfate-bearing ground[J]. J Adv Concr Technol, 2010, 8(2): 121–34.

[21] Liu Z, Zhang F, Deng D, et al. Physical sulfate attack on concrete lining–A field case analysis[J]. Case Studies Constr Mater, 2017(6): 206–212.

[22] Borges P H, Costa J O, Milestone N B, et al. Carbonation of CH and C–S–H in composite cement pastes containing high amounts of BFS[J]. Cem Concr Res, 2010, 40(2): 284–292.

[23] Morandeau A., Thiéry M, Dangla P. Impact of accelerated carbonation on OPC cement paste blended with fly ash[J]. Cem Concr Res, 2015, 67: 226–236.

[24] 周万良, 方坤河, 詹炳根. 掺粉煤灰、矿粉混凝土抗碳化性能研  [J]. 混凝土与水泥制品, 2012(12): 14–19.
ZHOU Wangliang, FANG Kunhe, ZHAN Benggeng. China Concr Cem Prod (in Chinese), 2012(12): 14–19.

[25] Pel L, Huinink H, Kopinga K. Efflorescence pathway diagram: Understanding salt weathering[J]. Constr Build Mater, 2004, 18(5): 309–313.

[26] Pel L, Huinink H, Kopinga K. Ion transport and crystallization in inorganic building materials as studied by nuclear magnetic resonance[J]. Appl Phys Lett, 2002, 81(15): 2893–2895.

[27] Stark D. Performance of Concrete in Sulfate Environments[R]. Portland Cement Association, Skokie, Illinois, USA, 2002: 28.

[28] Irassar E F, Di Maio A, Batic O R. Sulfate attack on concrete with mineral admixtures[J]. Cem Concr Res, 1996, 26(1): 113123.

[29] Tasdemir C. Combined effects of mineral admixtures and curing conditions on the sorptivity coefficient of concrete[J]. Cem Concr Res, 2003, 33: 1637–1642.


服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com