首页期刊信息编委及顾问期刊发行联系方式使用帮助留言板ENGLISH
位置:首页 >> 正文
二硫化钼/碳中空微球的制备及其电化学性能
作者:尹朋岸 王子晨   郭兴忠 
单位:浙江大学材料科学与工程学院 杭州 310027 
关键词:二硫化钼  中空微球 锂离子电池 
分类号:TQ174
出版年,卷(期):页码:2017,45(11):0-0
DOI:10.14062/j.issn.0454-5648.2017.11.15
摘要:
采用溶胶–凝胶法制备粒径均一的SiO2 微球,并以其作为牺牲模板,通过十六烷基三甲基溴化铵(CTAB)的连接作用
在SiO2 微球表面生长MoS2 和碳(C),借助碱液刻蚀去除二氧化硅微球模板制备了二硫化钼/碳中空微球材料,对产物进行了
表征,并将产物制备成电极材料进行恒流充放电、倍率性能、循环伏安、交流阻抗测试。结果表明:所制备的MoS2/C 中空
微球尺寸为200~300 nm,其表面包裹着花瓣状的MoS2 片层和无定形态的碳;作为锂电池负极材料,在100 mA/g 电流密度
下,首次充放电容量超过1 400 mA·h/g,60 次循环后,电容量仍可以保持在460 mA·h/g 左右。

 MoS2 and carbon (C) were firstly formed on the surface of SiO2 nanoparticles prepared by sol-gel method as sacrificial

template with hexadecyltrimethylammonium bromide (CTAB), and then molybdenum disulfide/carbon hollow microspheres were
prepared by alkali liquor etching silica microsphere matrix microspheres. The products were characterized, and the electrochemical
properties of the products as electrode materials were investigated by constant current charging and discharging, magnification
performance, cyclic voltammetry and AC impedance testing. The results show that the size of as-prepared MoS2/C hollow
microspheres is approxinmately 200–300 nm, and its surface is wrapped with petaloid MoS2 lamellae and amorphous carbon. As a
lithium battery anode material, the resultant product shows the first charge and discharge capacity of more than 1 400 mA·h/g at a
current density of 100 mA/g, and the capacity can still maintain 460 mA·h/g after 60 cycles.
基金项目:
国家自然科学基金(51372225)资助项目
作者简介:
尹朋岸(1993—),男,硕士研究生
参考文献:

[1] WHITTINGHAM M S. Lithium batteries and cathode materials[J]. Chem Inform, 2004, 35: 42714301.

[2] YOSHINO A. The birth of the lithium-ion battery[J]. Angew Chem Int Ed, 2012, 51: 57985800.

[3] MATTE H S, GOMATHI A, MANNA A K, et al. MoS2 and WS2 analogues of grapheme[J]. Angew Chem Int Ed, 2010, 49: 40594062.

[4] RADISAVLJEVIC B, RADENOVIC A, BRIVIO J. Single-layer MoS2 transistors[J]. Nat Nanotechnol, 2011(6): 147150.

[5] YIN Z, LI H, JIANG L, et al. Single-Layer MoS2 phototransistors[J]. Acs Nano, 2012(6): 7480.

[6] XINGZHONG GUO, ZiCHEN WANG, WENJUN ZHU, et al. The novel and facile preparation of multilayer MoS2 crystals by a chelation-assisted sol–gel method and their electrochemical performance[J]. RSC Adv, 2017(7): 90099014.

[7] CHANG K, CHEN W. Single-layer MoS2/grapheme dispersed in amorphous carbon: towards high electrochemical performances in rechargeable lithium ion batteries[J]. J Mater Chem, 2011, 21: 1717517184.

[8] XU X, FAN Z, DING S, et al. Fabrication of MoS2 nanosheet@TiO2 nanotube hybrid nanostructures for lithium storage[J]. Nanoscale, 2014(6): 52455250.

[9] DENG Z, HU Y, REN D, et al. Reciprocal hybridization of MoO2 nanoparticles and few-layer MoS2 for stable lithium-ion batteries[J]. Chemical Communications, 2015, 51: 1383813841.

[10] YIN Z, LI H, Li H, et al. Single-Layer MoS2 Phototransistors[J]. Acs Nano, 2012, 6: 7480.

[11] CHANG Kun, CHEN Wei. Cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries[J]. ACS Nano, 2011, 5: 47204728.

[12] ZHANG Kan, KIM Hwan-kin, SHI Xinjian. Graphene/acid coassisted synthesis of ultrathin MoS2 nanosheets with outstanding rate capability for a lithium battery anode[J]. Inorg Chem, 2013, 52: 9807–9812

[13] BRIVIO J, ALEXANDER D T L. Ripples and layers in ultrathin MoS2 membranes[J]. Nano Lett, 2011, 11: 51485153.

[14] WANG Z, CHEN T, CHEN W, et al. CTAB-assisted synthesis of single-layer MoS2-graphene composites as anode materials of Li-ion batteries[J]. J Mater Chem A, 2013(1): 22022210.

[15] FEI L, XU Y, WU X , et al. Instant gelation synthesis of 3D porous MoS2@C nanocomposites for lithium ion batteries[J]. Nanoscale, 2014, 6: 36643669.

[16] FENG C. Q, MA J, LI H, et al. Synthesis of molybdenum disulfide (MoS2) for lithium ion battery applications[J]. Mater Res Bull, 2009, 44: 1811–1815.

[17] DOMINKO R, ARCON D, MRZEL A, et al. Dichalcogenide nanotube electrodes for Li-ion batteries[J]. Adv Mater, 2002, 14: 1531–1534.

[18] MIKI Y, NAKAZATO D, IKUTA H, et al. Amorphous MoS2 as the cathode of lithium secondary batteries[J]. J Power Sources, 1995, 54: 508-510.

[19] WANG G X, BEWLAY S, YAO J, et al. Tungsten disulfide nanotubes for lithium storage[J]. Solid-State Lett, 2004, 7: A321–A323.

[20] DING S, ZHANG D, CHEN J S, et al. Facile synthesis of hierarchical MoS? microspheres composed of few-layered nanosheets and their lithium storage properties[J]. Nanoscale, 2012, 4: 9598.

[21] FEI L, XU Y, WU X, et al. Instant gelation synthesis of 3D porous MoS2@C nanocomposites for lithium ion batteries[J]. Nanoscale, 2014, 6: 36643669.

[22] SATO K, SAITO R, OYAMA Y, et al. D-band Raman intensity of graphitic materials as a function of laser energy and crystallite size[J]. Chem Phys Lett, 2006, 427: 117121.

[23] DEVERS E, AFANASIEV P, JOUGUET B, et al. Hydrothermal syntheses and catalytic properties of dispersed molybdenum sulfides[J]. Catal Lett, 2002, 82: 1317.

[24] WANG Z, CHEN T, CHEN W, et al. CTAB-assisted synthesis of single-layer MoS2- graphene composites as anode materials of Li-ion batteries[J]. J Mater Chem A, 2013, 1: 22022210.


服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com