首页期刊信息编委及顾问期刊发行联系方式使用帮助留言板ENGLISH
位置:首页 >> 正文
新型双钙钛矿基对称固体氧化物燃料电池的制备及性能
作者:陈永红1  洋1 2  雪1  冬1 卢肖永1 丁岩芝1  彬1 2 
单位:1. 低温共烧材料安徽省重点实验室 淮南燃料电池材料工程技术研究中心 淮南师范学院 安徽 淮南 232001  2. 电子科技大学能源科学与工程学院 成都 611731 
关键词:对称固体氧化物燃料电池 双钙钛矿 复合电极 
分类号:TM911.47
出版年,卷(期):页码:2017,45(11):0-0
DOI:10.14062/j.issn.0454-5648.2017.11.16
摘要:
采用柠檬酸-硝酸盐燃烧法制备PrBaFe2O5+δ(PBFO)和PrBaFe1.6Ni0.4O5+δ(PBFNO)电极材料,用高温固相法制备
La0.9Sr0.1Ga0.8Mg0.2O3–δ(LSGM)电解质。以LSGM 为电解质,PBFNO 及PBFNO-SDC 分别为对称电极制备单电池。利用X 射
线衍射法研究材料的物相结构,交流阻抗法记录界面极化行为,扫描电子显微镜观察电池的断面微结构,用自组装的测试系
统评价电池输出性能。结果表明:合成的PBFO 和PBFNO 粉体呈现单一的钙钛矿结构;Ni 掺杂能够明显改善空气气氛下的
界面极化行为,800 ℃时电极–电解质的界面极化阻抗由1.94 Ω·cm2 降低到0.39 Ω·cm2。通过PBFNO 与SDC 复合能够明显增
大电极的三相反应界面,提高电池输出性能,单电池在800 ℃时的最大功率输出密度从332 mW/cm2 增大到372 mW/cm2。
PBFNO-SDC 复合电极是潜在的对称固体氧化物燃料电池电极材料。
PrBaFe2O5+δ (PBFO) and PrBaFe1.6Ni0.4O5+δ (PBFNO) electrode materials were synthesized by a citric acid-nitrates
self-propagating combustion method, and La0.9Sr0.1Ga0.8Mg0.2O3–δ (LSGM) electrolyte was prepared by a conventional solid-state
reaction method. The LSGM-supported symmetrical solid oxide fuel cells using PBFNO and PBFNO-SDC as electrodes were
prepared. The phase structure, polarization resistance, cross-section microstructure and the cell performance were investigated by
X-ray diffraction, electrochemical impedance spectroscopy, scanning electron microscopy and self-assembly SOFC test system,
respectively. The results indicate that PBFO and PBFNO powders calcined at 1 000 ℃ for 3 h both exhibit a single perovskite
structure with cubic symmetry. The polarization performance is enhanced dramatically by Ni doping in air, which decreases from
1.94 Ω·cm2 to 0.39 Ω·cm2 at 800 ℃. The maximum power density of cells increases from 332 mW/cm2 to 372 mW/cm2 due to the
enlarged triple-phase boundary by the introduction of SDC, indicating that PBFNO-SDC is a promising electrode material for
symmetrical solid oxide fuel cells.
基金项目:
国家自然科学基金(51102107),安徽高校自然科学研究 (KJ2017A459)资助项目
作者简介:
陈永红(1962—),男,教授
参考文献:

 [1] NORBERT H M, FRANK T, SVEN U, et al. Materials and manufacturing technologies for solid oxide fuel cells[J]. J Mater Sci, 2010, 45(22): 31093135.

[2] WEI T, ZHANG Q, HUANG Y H, et al. Cobalt-based double-perovskite symmetrical electrodes with low thermal expansion for solid oxide fuel cells[J]. J Mater Chem, 2012, 22(8): 225231.

[3] Möbius H H. On the history of solid electrolyte fuel cells[J]. J Solid State Electrochem, 1997, 1(1): 216.

[4] CHEN Y H, CHENG Z X, YANG Y, et al. Novel quasi-symmetric solid oxide fuel cells with enhanced electrochemical performance[J]. J  Power Sources, 2016, 310: 109117.

[5] TIAN D, LIN B, YANG Y, et al. Enhanced performance of symmetrical solid oxide fuel cells using a doped ceria buffer layer[J]. Electrochim Act, 2016, 208: 318324.

[6] HANSEN K K. A-Site Deficient (Pr0.6Sr0.4)1−sFe0.8Co0.2O3-δ perovskites as solid oxide fuel cell cathodes[J]. J Electrochem Soc, 2009, 156(10): B12571260.

[7] SONG Y, ZHONG Q, TAN W, et al. Effect of cobalt-substitution Sr2Fe1.5–xCoxMo0.5O6–δ for intermediate temperature symmetrical solid oxide fuel cells fed with H2-H2S[J]. Electrochim Act, 2014, 139: 1320.

[8] KIM H, PARK S, VOHS J M, et al. Direct oxidation of liquid fuels in a solid oxide fuel cell[J]. J Electrochem Soc, 2001, 148(7): A693A695.

[9] BASTIDAS D M, TAO S, IRVINE J T S. A symmetrical solid oxide fuel cell demonstrating redox stable perovskite electrodes[J]. J Mater Chem, 2006, 16(17): 16031605.

[10] MENG X, LIU X, HAN D, et al. Symmetrical solid oxide fuel cells with impregnated SrFe0.75 Mo0.25O3−δ electrodes[J]. J Power Sources, 2014, 252: 5863.

[11] LU J, YIN Y M, LI J, et al. A cobalt-free electrode material La0.5Sr0.5Fe0.8Cu0.2O3−δ for symmetrical solid oxide fuel cells[J]. Electrochem Commun, 2015, 61: 1822.

[12] CHEN T, PANG S, SHEN X, et al. Evaluation of Ba-deficient PrBa1–xFe2O5+δ oxides as cathode materials for intermediate-temperature solid oxide fuel cells[J]. Rsc Adv, 2016, 6(17): 1382913836.

[13] JIN F J, SHEN Y, WANG R, et al. Double-perovskite PrBaCo2/3Fe2/3Cu2/3O5+δ as cathode material for intermediate-temperature solid-oxide fuel cells[J]. J Power Sources, 2013, 234(8): 244251.

[14] DONG G, YANG C, HE F, et al. Tin doped PrBaFe2O5+δ anode material for solid oxide fuel cells[J]. Rsc Adv, 2017, 7(37): 2264922661.

[15] YANG C, YANG Z, JIN C, et al. Sulfur‐Tolerant redox‐reversible anode material for direct hydrocarbon solid oxide fuel cells[J]. Adv Mater, 2012, 24(11): 14391443.

[16] ZHANG P, GUAN G, KHAERUDINI D S, et al. Properties of A-site nonstoichiometry (Pr0.4)xSr0.6Co0.2Fe0.7Nb0.1O3−σ (0.9≤x≤1.1) as symmetrical electrode material for solid oxide fuel cells[J]. J Power Sources, 2014, 248: 163171.

[17] CHEN D, RAN R, SHAO Z. Assessment of PrBaCo2O5+δ + Sm0.2Ce0.8O1.9 composites prepared by physical mixing as electrodes of solid oxide fuel cells[J]. J Power Sources, 2010, 195(21): 71877195.

[18] GU HAITAO, CHEN H, GAO L, et al. Electrochemical properties of LaBaCo2O5+δ–Sm0.2Ce0.8O1.9 composite cathodes for intermediate-temperature solid oxide fuel cells[J]. Electrochim Act, 2009, 54(27): 70947098.


服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com