首页期刊信息编委及顾问期刊发行联系方式使用帮助留言板ENGLISH
位置:首页 >> 正文
层状类钙钛矿多铁性材料研究进展
作者:张大龙 陈志伟 黄伟川 李晓光 
单位:中国科学技术大学物理系 合肥 230026 
关键词:多铁性 Double-Perovskite Ruddlesden-Popper Aurivillius 
分类号:TQ174.1+3
出版年,卷(期):页码:2017,45(12):1707-1720
DOI:10.14062/j.issn.0454-5648
摘要:
多铁性材料的自旋、电荷、轨道、晶格等多重有序存在着复杂的相互作用,且对磁场、电场、光场、应变和温度等多种外界环境敏感,从而表现出一些新奇的物理现象,使其在存储器、传感器、微波等领域中有重要的应用价值。随着对单相多铁材料研究的深入,人们已从简单钙钛矿结构的多铁性研究转向复杂的层状类钙钛矿体系,其丰富而复杂的结构给人们提供了更广泛的设计和调控空间。介绍并分析了如 Double-Perovskite(DP)、Ruddlesden-Popper(RP)、Aurivillius(AU)以及 AnBnO3n+2 系列等层状类钙钛矿多铁性特征的研究进展。人们已发现 Bi2FeCrO6等 DP 体系、(1–x)(CaySr1–y)1.15Tb1.85Fe2O7–xCa3Ti2O7等 RP 体系、Bi4NdTi3Fe1–xCoxO15–Bi3NdTi2Fe1–xCoxO12–δ 等 AU 体系以及 La6(Ti0.67Fe0.33)6O20层状材料等,均具有室温或近室温多铁性。最后提出了当前面临的问题和对未来的展望。

 Single phase multiferroic materials with the coexistence of spin, charge, orbit, and lattice orderings have some physical phenomena, which are sensitive to several external stimulations like magnetic field, electric field, optical field, strain and temperature.These materials can be thus used in the field of storage, sensors, microwave, etc. For room-temperature multiferroics, people pay attention to more complex systems, such as layered-perovskite-like systems, which may provide broader space for designing and controlling new multifunctional materials and devices. This review represented recent development on the multiferroic properties of Double-Perovskite (DP), Ruddlesden-Popper(RP), Aurivillius(AU) and AnBnO3n+2 series compounds, respectively. All these layered systems, such as DP phases Bi2FeCrO6, RP phases (1–x)(CaySr1–y)1.15Tb1.85Fe2O7–xCa3Ti2O7, AU phases Bi4NdTi3Fe1–xCoxO15–Bi3NdTi2Fe1–xCoxO12–δ and La6(Ti0.67Fe0.33)6O20, show the coexistence of ferroelectricity and ferromagnetism above or near room temperature. Finally, we put forward the current issues we are facing and the outlooks of the future.

基金项目:
国家自然科学基金(51332007、21521001、51622209);国家重点研发计划(2016YFA0300103、2015CB921201)资助。
作者简介:
第一作者:张大龙(1988—),男,博士。
参考文献:
[1] DONG S, LIU J M, CHEONG S W, et al. Multiferroic materials and magnetoelectric physics: symmetry, entanglement, excitation, and topology[J]. Adv Phys, 2015, 64(5–6): 519–626.
[2] MA J, HU J M, LI Z, et al. Recent progress in multiferroic magnetoelectric composites: from bulk to thin films[J]. Adv Mater,2011, 23(9): 1062–1087.
[3] HUANG W C, YANG S W, LI X G. Multiferroic heterostructures and tunneling junctions[J]. Journal of Materiomics, 2015, 1(4): 263–284.
[4] 刘愉快, 黄伟川, 李晓光. 多铁性异质结研究进展[J]. 华南师范大学学报(自然科学版), 2015, 47(6): 1–16.LIU Yukuai, HUANG Weichuan, LI Xiaoguang. J South China Norm Univ: Nat Sci Ed (in Chinese), 2015, 47(6): 1–16.
[5] HU J M, CHEN L Q, NAN C W. Multiferroic heterostructuresintegrating ferroelectric and magnetic materials[J]. Adv Mater, 2016,28(1): 15–39.
[6] PAYNE D J, EGDELL R G, WALSH A, et al. Electronic origins of structural distortions in post-transition metal oxides: experimental and theoretical evidence for a revision of the lone pair model[J]. Phys Rev Lett, 2006, 96(15):157403.
[7] LEBEUGLE D, COLSON D, FORGET A, et al. Electric-field-induced spin flop in BiFeO3 single crystals at room temperature[J]. Phys Rev Lett, 2008, 100(22): 227602.
[8] KENZELMANN M, HARRIS A B, JONAS S, et al. Magnetic inversion symmetry breaking and ferroelectricity in TbMnO3[J]. Phys Rev Lett, 2005, 95(8): 087206.
[9] MORIYA T. Anisotropic superexchange interaction and weak ferromagnetism[J]. Phys Rev, 1960, 120(1): 91–98.
[10] DZIALOSHINSKII I. Thermodynamic theory of weak ferromagnetism in antiferromagnetic substances[J]. Soviet Physics JETP-USSR, 1957, 5(6): 1259–1272.
[11] XIANG H J, WEI S H, WHANGBO M H, et al. Spin-orbit coupling and ion displacements in multiferroic TbMnO3[J]. Phys Rev Lett, 2008,101(3): 037209.
[12] WALKER H, FABRIZI F, PAOLASINI L, et al. Femtoscalemagnetically induced lattice distortions in multiferroic TbMnO3[J].Science, 2011, 333(6047): 1273–1276.
[13] KING G, WOODWARD P M. Cation ordering in perovskites[J]. JMater Chem, 2010, 20(28): 5785. 
[14] RONDINELLI J M, FENNIE C J. Octahedral rotation-induced ferroelectricity in cation ordered perovskites[J]. Adv Mater, 2012,24(15): 1961–1968.
[15] MULDER A T, BENEDEK N A, RONDINELLI J M, et al. Turning ABO3 antiferroelectrics into ferroelectrics: design rules for practical rotation-driven ferroelectricity in double perovskites and A3B2O7 Ruddlesden-Popper compounds[J]. Adv Funct Mater, 2013, 23:4810–4820.
[16] YOUNG J, RONDINELLI J M. Atomic scale design of polar perovskite oxides without Second-Order Jahn–Teller ions[J]. Chem Mater, 2013, 25(22): 4545–4550.
[17] LU X Z, GONG X G, XIANG H J. Polarization enhancement in perovskite superlattices by oxygen octahedral tilts[J]. Comp Mater Sci,2014, 91: 310–314.
[18] YOUNG J, RONDINELLI J M. Improper ferroelectricity and piezoelectric responses in rhombohedral (A,A′)B2O6 perovskite oxides[J]. Phys Rev B, 2014, 89(17): 174110.
[19] NECHACHE R, HARNAGEA C, CARIGNAN L P, et al. Epitaxial thin films of the multiferroic double perovskite Bi2FeCrO6 grown on(100)-oriented SrTiO3 substrates: Growth, characterization, andoptimization[J]. J Appl Phys, 2009, 105(6): 061621.
[20] NECHACHE R, COJOCARU C V, HARNAGEA C, et al. Epitaxialpatterning of Bi2FeCrO6 double perovskite nanostructures: multiferroict room temperature[J]. Adv Mater, 2011, 23(15): 1724–1729.
[21] SHIMAKAWA Y, AZUMA M, ICHIKAWA N. Multiferroic Compounds with Double-Perovskite Structures[J]. Materials, 2011,4(12): 153–168.
[22] AZUMA M, TAKATA K, SAITO T, et al. Designed ferromagnetic,ferroelectric Bi2NiMnO6[J]. J Am Chem Soc, 2005, 127(24): 8889–8892.
[23] SINGH M P, CHARPENTIER S, TRUONG K D, et al. Evidence of bidomain structure in double-perovskite La2CoMnO6 thin films[J].Appl Phys Lett, 2007, 90(21): 211915.
[24] SINGH M P, TRUONG K D, FOURNIER P. Magnetodielectric effect in double perovskite La2CoMnO6 thin films[J]. Appl Phys Lett, 2007,91(4): 042504.
[25] BULL C L, MCMILLAN P F. Raman scattering study and electrical properties characterization of elpasolite perovskites Ln2(BB′)O6 (Ln=La,Sm…Gd and B,B′=Ni, Co, Mn)[J]. J Solid State Chem, 2004, 177(7):2323–2328.
[26] YANEZ-VILAR S, MUN E D, ZAPF V S, et al. Multiferroic behavior in the double-perovskite Lu2MnCoO6[J]. Phys Rev B, 2011, 84(13):134427.
[27] CHOI H, MOON J, KIM J, et al. Single crystal growth of multiferroic double perovskites: Yb2CoMnO6 and Lu2CoMnO6[J]. Crystals, 2017,7(3): 67.
[28] ZAPF V S, UELAND B G, LAVER M, et al. Magnetization dynamics and frustration in the multiferroic double perovskite Lu2MnCoO6[J].Phys Rev B, 2016, 93(13): 134431.
[29] ZHANG J T, LU X M, YANG X Q, et al. Origins of ↑↑↓↓ magnetic structure and ferroelectricity in multiferroic Lu2CoMnO6[J]. Phys Rev B, 2016, 93(7): 075140.
[30] SHARMA G, SAHA J, KAUSHIK S D, et al. Magnetism driven ferroelectricity above liquid nitrogen temperature in Y2CoMnO6[J].Appl Phys Lett, 2013, 103(1): 012903.
[31] TERADA N, KHALYAVIN D D, MANUEL P, et al. Ferroelectricity induced by ferriaxial crystal rotation and spin helicity in a B-site-ordered double-perovskite multiferroic In2NiMnO6[J]. Phys Rev B, 2015, 91(10): 104413.
[32] ZHOU H Y, ZHAO H J, ZHANG W Q, et al. Magnetic domain wall induced ferroelectricity in double perovskites[J]. Appl Phys Lett, 2015,106(15): 152901.
[33] WANG P S, REN W, BELLAICHE L, et al. Predicting a ferrimagnetic phase of Zn2FeOsO6 with strong magnetoelectric coupling[J]. Phys Rev Lett, 2015, 114(14): 147204.
[34] ZHAO H J, REN W, YANG Y, et al. Near room-temperature multiferroic materials with tunable ferromagnetic and electrical properties[J]. Nat Commun, 2014, 5: 4021.
[35] RUDDLESDEN S N, POPPER P. The compound Sr3Ti2O7 and its structure[J]. Acta Crystallogr, 1958, 11(1): 54–55.
[36] RUDDLESDEN S N, POPPER P. New compounds of the K2NiF4 type[J]. Acta Crystallogr, 1957, 10(8): 538–539.
[37] DONGKYU LEE, LEE H N. Controlling oxygen mobility inruddlesden-popper oxides[J]. Materials, 2017, 10(4): 368.
[38] ISHIDA K, MUKUDA H, KITAOKA Y, et al. Spin-triplet superconductivity in Sr2RuO4 identified by 17O Knight shift[J]. Nature,1998, 396(6712): 658–660.
[39] FENNIE C J, RABE K M. First-principles investigation of ferroelectricity in epitaxially strained Pb2TiO4[J]. Phys Rev B, 2005,71(10): 100102.
[40] OH Y S, LUO X, HUANG F T, et al. Experimental demonstration of hybrid improper ferroelectricity and the presence of abundant charged walls in (Ca,Sr)3Ti2O7 crystals[J]. Nature Mater, 2015, 14(4): 407–413.
[41] LU X Z, RONDINELLI J M. Epitaxial-strain-induced polar-tononpolar transitions in layered oxides[J]. Nature Mater, 2016, 15(9):951–955.
[42] STONE G, OPHUS C, BIROL T, et al. Atomic scale imaging of competing polar states in a Ruddlesden-Popper layered oxide[J]. Nat Commun, 2016, 7: 12572.
[43] LI X, YANG L, LI C F, et al. Ultra-low coercive field of improper ferroelectric Ca3Ti2O7 epitaxial thin films[J]. Appl Phys Lett, 2017,110(4): 042901.
[44] DENG G, SHEPTYAKOV D, POMJAKUSHIN V, et al. Chemical pressure effects on crystal and magnetic structures of bilayer manganites PrA2Mn2O7 (A = Sr or Ca)[J]. J Appl Phys, 2016, 119(21):214102.
[45] JANTSKY L, OKAMOTO H, THOMAS M, et al. Complex magnetic behavior in the PrSr3(Fe1–xCox)3O10−δ n= 3 Ruddlesden–Popper-typesolid solution with high valent cobalt and iron[J]. Chem Mater, 2014,26(2): 886–897.
[46] BENEDEK N A, FENNIE C J. Hybrid improper ferroelectricity: a mechanism for controllable polarization-magnetization coupling[J].Phys Rev Lett, 2011, 106(10): 107204.
[47] MA C, LIN Y, YANG H, et al. Direct observation of magnetic-ion off-centering-induced ferroelectricity in multiferroic manganite Pr(Sr0.1Ca0.9)2Mn2O7[J]. Adv Mater, 2015, 27(41): 6328–6332.
[48] PITCHER M J, MANDAL P, DYER M S, et al. Magnetic materials.Tilt engineering of spontaneous polarization and magnetization above 300 K in a bulk layered perovskite[J]. Science, 2015, 347(6220): 420-424.
[49] LU X Z, RONDINELLI J M. Room temperature electric-field control of magnetism in layered oxides with cation order[J]. Adv Funct Mater,2017, 27(4): 1604312.
[50] LIU X Q, WU J W, SHI X X, et al. Hybrid improper ferroelectricity in Ruddlesden-Popper Ca3(Ti,Mn)2O7 ceramics[J]. Appl Phys Lett, 2015,106(20): 202903.
[51] PITCHER M J, MANDAL P, DYER M S, et al. Tilt engineering of spontaneous polarization and magnetization above 300 K in a bulk layered perovskite[J]. Science, 2015, 347(6220): 420–424.
[52] AURIVILLIUS B. Mixed bismuth oxides with layer lattices. 1. The structure type of CaNb2Bi2O9[J]. Arkiv for kemi, 1950, 1(5): 463–480.
[53] AURIVILLIUS B. Mixed bismuth oxides with layer lattices. 2.Structure of Bi4Ti3O12[J]. Arkiv for kemi, 1950, 1(6): 499–512.
[54] AURIVILLIUS B. Mixed Oxides With Layer Lattices. 3. Structure of BaBi4Ti4O15[J]. Arkiv for kemi, 1951, 2(6): 519–527.
[55] ZOU H, HUI X, WANG X, et al. Luminescent, dielectric, and ferroelectric properties of Pr doped Bi7Ti4NbO21 multifunctional ceramics[J]. J Appl Phys, 2013, 114(22): 223103.
[56] NOGUCHI Y, MIYAYAMA M, KUDO T. Ferroelectric properties of intergrowth Bi4Ti3O12–SrBi4Ti4O15 ceramics[J]. Appl Phys Lett, 2000, 77(22): 3639.
[57] IRIE H, MIYAYAMA M, KUDO T. Structure dependence of ferroelectric properties of bismuth layer-structured ferroelectric single crystals[J]. J Appl Phys, 2001, 90(8): 4089.
[58] ZHAO H, KIMURA H, CHENG Z, et al. Large magnetoelectric coupling in magnetically short-range ordered Bi5Ti3FeO15 film[J]. Sci Rep, 2014, 4: 5255.
[59] MAO X Y, WANG W, CHEN X B, et al. Multiferroic properties of layer-structured Bi5Fe0.5Co0.5Ti3O15 ceramics[J]. Appl Phys Lett, 2009,95(8): 082901.
[60] CHEN X Q, XIAO J, XUE Y, et al. Room temperature multiferroic properties of Ni-doped Aurivillus phase Bi5Ti3FeO15[J]. Ceram Int,2014, 40(2): 2635–2639.
[61] DJANI H, BOUSQUET E, KELLOU A, et al. First-principles study of the ferroelectric Aurivillius phase Bi2WO6[J]. Phys Rev B, 2012, 86(5):054107.
[62] SRINIVAS A, SRITHARAN T, BOEY F Y C. Bismuth replacement by samarium in strontium bismuth niobate and its multiferroic nature[J]. JAppl Phys, 2005, 98(3): 036104.
[63] SHIGYO T, KIYONO H, NAKANO J, et al. Synthesis and dielectric-magnetic properties of rare-earth (La, Nd, Sm)-modified Bi4Ti3O12[J]. Jpn J Appl Phys, 2008, 47(9S): 7617.
[64] TINTE S, STACHIOTTI M G. Multiferroic behavior of Aurivillius Bi4Mn3O12 from first principles[J]. Phys Rev B, 2012, 85(22): 224112.
[65] SNEDDEN A, HERVOCHES C, LIGHTFOOT P. Ferroelectric phase transitions in SrBi2Nb2O9 and Bi5Ti3FeO15: A powder neutron diffraction study[J]. Phys Rev B, 2003, 67(9): 092102.
[66] BIRENBAUM A Y, EDERER C. Potentially multiferroic Aurivillius phase Bi5FeTi3O15: Cation site preference, electric polarization, and magnetic coupling from first principles[J]. Phys Rev B, 2014, 90(21):214109.
[67] JIANG P P, ZHANG X L, CHANG P, et al. Spin-phonon interactions of multiferroic Bi4Ti3O12–BiFeO3 ceramics: Low-temperature Raman scattering and infrared reflectance spectra investigations[J]. J Appl Phys, 2014, 115(14): 144101.
[68] ZHAO H, CAI K, CHENG Z, et al. A novel class of multiferroic material, Bi4Ti3O12·nBiFeO3 with localized magnetic ordering evaluated from their single crystals[J]. Adv Electron Mater, 2017, 3(1):1600254.
[69] CHEN X Q, XUE Y, LU Z W, et al. Magnetodielectric properties of Bi4NdTi3Fe0.7Co0.3O15 multiferroic system[J]. J Alloys Compd, 2015,622: 288-291.
[70] XIAO J, ZHANG H, XUE Y, et al. The influence of Ni-doping concentration on multiferroic behaviors in Bi4NdTi3FeO15 ceramics[J].Ceram Int, 2015, 41(1): 1087–1092.
[71] GUAN N, WANG Y, SUN D, et al. A simple one-pot synthesis of single-crystalline magnetite hollow spheres from a single iron precursor[J]. Nanotechnology, 2009, 20(10): 105603.
[72] MUTHUSELVAM I P, BHOWMIK R N. Structural phase stability and magnetism in Co2FeO4 spinel oxide[J]. Solid State Sciences, 2009,11(3): 719–725.
[73] KIM K J, LEE J H, KIM C S. Phase decomposition and related structural and magnetic properties of iron-cobaltite thin films[J]. JKoren Phys Soc, 2012, 61(8): 1274–1278.
[74] KEENEY L, GROH C, KULKARNI S, et al. Room temperature electromechanical and magnetic investigations of ferroelectric Aurivillius phase Bi5Ti3(FexMn1−x)O15 (x = 1 and 0.7) chemical solution deposited thin films[J]. J Appl Phys, 2012, 112(2): 024101.
[75] KEENEY L, KULKARNI S, DEEPAK N, et al. Room temperature ferroelectric and magnetic investigations and detailed phase analysis of Aurivillius phase Bi5Ti3Fe0.7Co0.3O15 thin films[J]. J Appl Phys, 2012, 112(5): 052010.
[76] SCHMIDT M, AMANN A, KEENEY L, et al. Absence of evidence not equal evidence of absence: statistical analysis of inclusions in multiferroic thin films[J]. Sci Rep, 2014, 4: 5712.
[77] ZHANG D L, FENG L, HUANG W C, et al. Oxygen vacancy-induced ferromagnetism in Bi4NdTi3FeO15 multiferroic ceramics[J]. J Appl Phys, 2016, 120(15): 154105.
[78] KAN Y M, ZHANG G J, WANG P L, et al. Preparation and properties of neodymium-modified bismuth titanate ceramics[J]. J Eur Ceram Soc,2008, 28(8): 1641–1647.
[79] ZHANG D L, HUANG W C, CHEN Z W, et al. Structure evolution and multiferroic properties in cobalt doped Bi4NdTi3Fe1–xCoxO15–Bi3NdTi2Fe1–xCoxO12–δ intergrowth aurivillius compounds[J]. Sci Rep,2017, 7: 43540.
[80] WANG J L, FU Z P, PENG R R, et al. Low magnetic field response single-phase multiferroics under high temperature[J]. Mater Horiz,2015, 2: 232–236.
[81] FARAZ A, MAITY T, SCHMIDT M, et al. Direct visualization of magnetic-field-induced magnetoelectric switching in multiferroic aurivillius phase thin films[J]. J Am Ceram Soc, 2017, 100(3):975–987.
[82] NANAMATSU S, KIMURA M, DOI K, et al. A new ferroelectric: La2Ti2O7[J]. Ferroelectrics, 1974, 8(1): 511–513.
[83] LOPEZ-PEREZ J, INIGUEZ J. Ab initiostudy of proper topological ferroelectricity in layered perovskite La2Ti2O7[J]. Phys Rev B, 2011,84(7): 075121. 
[84] SCARROZZA M, FILIPPETTI A, FIORENTINI V. Ferromagnetism and orbital order in a topological ferroelectric[J]. Phys Rev Lett, 2012,109(21): 217202.
[85] GONG G, QIU Y, ZERIHUN G, et al. Multiferroic properties in transition metals doped La2Ti2O7 ceramics[J]. J Alloys Compd, 2014,611: 30–33.
[86] CHENG X Y, WANG X X, YANG H S, et al. Multiferroic properties of the layered perovskite-related oxide La6(Ti0.67Fe0.33)6O20[J]. J MaterChem C, 2015, 3(17): 4482–4489.
[87] CHOI E M, KLEIBEUKER J E, FIX T, et al. Interface-coupled bifeo3/bimno3 superlattices with magnetic transition temperature up to 410K[J]. Advanced Materials Interfaces, 2016, 3(5): 1500597.
[88] NIE Y F, ZHU Y, LEE C H, et al. Atomically precise interfaces from non-stoichiometric deposition[J]. Nat Commun, 2014, 5: 4530.
[89] WANG C, KE X, WANG J, et al. Ferroelastic switching in a layered-perovskite thin film[J]. Nat Commun, 2016, 7: 10636. 
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com