首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
铝硅酸盐聚合物及其复合材料研究进展
作者:贾德昌 何培刚 苑景坤 王睿飞 
单位:哈尔滨工业大学材料科学与工程学院 特种陶瓷研究所 先进结构功能一体化 材料与绿色制造技术工信部重点实验室 哈尔滨 150080 
关键词:铝硅酸盐聚合物 聚合机理 复合材料 3D 打印 核废料固封 
分类号:P578.94;TQ174
出版年,卷(期):页码:2017,45(12):1721-1737
DOI:10.14062/j.issn.0454-5648
摘要:

铝硅酸盐聚合物及其复合材料具有低温制备、工艺简单、成本低、可沿用多数树脂基复合材料的制备工艺成型复杂形状构件、轻质、耐热、阻燃、耐腐蚀、对核废料及重金属离子固封效果好等优点,能够满足国家对节能降耗和 CO2减排的需要,因此在传统建筑、冶金等领域具有广阔的应用前景;它还可通过掺杂改性赋予其导电、电磁屏蔽、吸波隐身等功能特性,且可通过高温陶瓷化处理获得力学和热学性能宽温域调控的榴石陶瓷及其复合材料,在航空航天用低成本耐热结构材料、防/隔热材料、吸波隐身材料等方面具有重要潜在应用。系统评述了国内外在铝硅酸盐聚合物及其复合材料方面的研究进展,包括铝硅酸盐聚合物的聚合机理和性能特点、为克服其脆性缺点而发展的各种类型复合材料,以及最近铝硅酸盐聚合物在转化制备先进陶瓷、核废料固封、新型建筑材料等领域的应用研究进展,并且指出了其发展方向。

Geopolymers and related composites have some advantages like low-temperature preparation, simple processing process like resin-based composite and forming complex shape components, low cost, light, heat resistant, flame retardant, corrosion resistant,sound solid sealing for nuclear waste and heavy metal ions for energy saving and CO2 emission reduction. They can be thus used in conventional construction, metallurgy and related fields. Geopolymer can be modified by doping to obtain the functional properties such as conductivity, electromagnetic shielding, stealth and others. Meanwhile, after high-temperature treatment, geopolymer and its composites can be converted into leucite and leucite-based composites with controlled mechanical and thermal properties, showing potential applications as a low-cost heat-resistant structural material for aerospace, heat-resistant components and stealth materials.

This review summarized recent development of geopolymer and its composites, and the aspects dealt with geopolymerization mechanism and microstructure evolution of geopolymer, the structural design, preparation technology and performance characteristics of geopolymer composites, and application in 3D printing and nuclear waste. In addition, the future development of geopolymer field was also given.
基金项目:
国家重点研发计划(2017YFB0310400);国家自然科学基金(51372048;51502052;51321061;51225203)资助。
作者简介:
贾德昌(1969—),男,教授。
参考文献:

[1] DAVIDOVITS J, DAVIDOVICS M. Geopolymer: ultra-high temperature tooling material for the manufacture of advanced composites[J]. Sampe, 1991, 36(2): 1939–1949.

[2] DAVIDOVITS J. Geopolymers – inorganic polymeric materials[J]. J Therm Anal, 1991, 37(8): 1633–1656.
[3] 贾德昌, 何培刚, 矿聚物及其复合材料研究进展[J]. 硅酸盐学报,2007(S1): 157–166. JIA Dengchang, HE Peigang. J Chin Ceram Soc, 2007(S1): 157–166.
[4] DUXSON P, FERNÁNDEZ–JIMÉNEZ A, PROVIS J L, et al. Geopolymer technology: The current state of the art[J]. J Mater Sci,2007, 42(9): 2917–2933.
[5] DUXSON P, PROVIS J L. Designing Precursors for geopolymer cements[J]. J Am Ceram Soc, 2008, 91(12): 3864–3869.
[6] 林铁松. Csf-Al2O3p强韧铝硅酸盐聚合物基复合材料的力学性能及断裂行为[D], 哈尔滨工业大学, 2009.Lin Tiesong. Mechanical properties and fracture behavior of Csf(Al2O3)reinforced geopolymer matrix composites (in Chinese,dissertation). Harbin: Harbin institute of Technology, 2009.
[7] ABDOLLAHNEJAD Z, PACHECO–TORGAL F, FÉLIX T, et al. Properties and cost analysis of fly ash-based geopolymer foam[J]. Constr Build Mater, 2015, 80: 18–30.
[8] SAKULICH A R. Reinforced geopolymer composites for enhanced material greenness and durability[J]. Sustain Cities Soc, 2011, 1(4): 195–210.
[9] 郑娟荣, 覃维祖. 地聚物材料的研究进展[J]. 新型建筑材料, 2002,12(4): 11–12.ZHENG Juanrong, TAN Weizu. New Build Mater (in Chinese), 2002,4: 11–12.
[10] 任玉峰, 马鸿文, 王刚, 等. 利用金矿尾砂制备矿物聚合材料的实验研究[J]. 现代地质, 2003, 17(2): 171–175.REN Yufeng, MA Hongwen, WANG Gang, et al. Geo Sci (in Chinese),2003, 17(2): 171–175.
[11] 任玉峰, 马鸿文, 王刚, 等. 金矿尾砂矿物聚合材料的制备及其影响因素[J]. 岩矿测试, 2003, 22(2): 103–108.REN Yufeng, MA Hongwen, WANG Gang, et al. Rock Min Anal (inChinese), 2003, 22(2): 103–108.
[12] VAOU V, PANIAS D. Thermal insulating foamy geopolymers fromperlite[J]. Miner Eng, 2010, 23(14): 1146–1151.
[13] ERDOGAN S T. Properties of ground perlite geopolymer mortars[J]. JMater Civil Eng, 2015, 27(7): 04014210.
[14] TSAOUSI G M, DOUNI I, PANIAS D. Characterization of the properties of perlite geopolymer pastes[J]. Mater Constr, 2016,66(324):e102.
[15] HAIRI S N M, JAMESON G N L, ROGERS J J, et al. Synthesis and properties of inorganic polymers (geopolymers) derived from Bayer process residue (red mud) and bauxite[J]. J Mater Sci, 2015, 50(23):7713–7724.
[16] KAYA K, SOYER–UZUN S. Evolution of structural characteristics and compressive strength in red mud-metakaolin based geopolymer systems[J]. Ceram Int, 2016, 42(6): 7406–7413.
[17] DAVIDOVITS J. Geopolymers and geopolymers materials[J]. J Therm Anal, 1989, 35(2): 429–441.
[18] SILVA P De, SAGOE–CRENSTIL K, SIRIVIVATNANON V. Kinetics of geopolymerization: Role of Al2O3 and SiO2[J]. Cem Concr Res, 2007, 37(4): 512–518.
[19] KHALE D, CHAUDHARY R. Mechanism of geopolymerization and factors influencing its development: a review[J]. J Mater Sci, 2007,42(3): 729–746.
[20] YAO X, ZHANG Z, ZHU H, et al. Geopolymerization process of alkali-metakaolinite characterized by isothermal calorimetry[J]. ThermActa, 2009, 493(1–2): 49–54.
[21] MUNIZ–VILLARREAL M S, MANZANO–RAMIREZ A, SAMPIERI–BULBARELA S, et al. The effect of temperature on thegeopolymerization process of a metakaolin-based geopolymer[J]. MATER LETT, 2011, 65(6): 995–998.
[22] KUMAR A, KUMAR S. Development of paving blocks from synergistic use of red mud and fly ash using geopolymerization[J]. Constr Build Mater, 2013, 38(2): 865–871.
[23] NATH S K, MUKHERJEE S, MAITRA S, et al. Ambient and elevated temperature geopolymerizationbehaviour of class f fly ash[J]. Trans Indian Ceram Soc, 2014, 73(2): 126–132.
[24] MO B H, HE Z, CUI X M, et al. Effect of curing temperature on geopolymerization of metakaolin-based geopolymers[J]. Appl Clay Sci, 2014, 99: 144–148
[25] DUXSON P, MALLICOAT S W, LUKEY G C, et al. The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers[J]. Colloid Surf A, 2007, 292(1): 8–20.
[26] AUTEF A, JOUSSEIN E, GASGNIER G, et al. Role of the silica source on the geopolymerization rate[J]. J Non-Cryst Solids, 2012, 358(21): 2886–2893.
[27] AUTEF A, JOUSSEIN E, GASGNIER G, et al. Role of the silica source on the geopolymerization rate: A thermal analysis study[J]. J Non-Cryst Solids, 2013, 366: 13–21.
[28] 张云升, 孙伟, 林玮, 等. 用环境扫描电镜原位定量追踪K–PSDS型 地聚合物混凝土界面区的水化过程[J]. 硅酸盐学报, 2003, (8): 806–810. ZHANG Yunsheng, SUN Wei, LIN Wei, et al. J Chin Ceram Soc, 2003,(8): 806–810.
[29] 张云升, 孙伟, 沙建芳, 等. 粉煤灰地聚合物混凝土的制备、特性及机理[J]. 建筑材料学报, 2003, (3): 237–242.ZHANG Yunsheng, SUN Wei, SHA Jianfang, et al. J Build Mater (in Chinese), 2003, (3): 237–242.
[30] 翁履谦, 宋申华. 新型地质聚合物胶凝材料[J]. 材料导报, 2005, (2):67–68.WENG Lvqian, SONG Shenghua. Mater Rev (in Chinese), 2005, (2):67–68.
[31] 聂轶苗, 马鸿文, 杨静, 等. 矿物聚合材料固化过程中的聚合反应机理研究[J]. 现代地质, 2006, (2): 340–346.NIE Tiemiao, MA Hongwen, YANG Jing, et al, Geo Sci (in Chinese),2006, (2): 340–346.
[32] 王美荣. 铝硅酸盐聚合物聚合机理及含漂珠复合材料组织与性能[D]. 哈尔滨工业大学, 2011.WANG Meirong. Geopolymerization mechanism of aluminosilicate geopolymer and microstructure and properties of fly ash cenosphere/geopolymer composties (in Chinese, dissertation). Harbin: Harbin institute of Technology, 2011.
[33] 闫姝. 氧化石墨烯增强铝硅酸盐聚合物的聚合与陶瓷化机制[D]. 哈尔滨工业大学, 2016. YAN Shu. Geopolymerization and ceramic formation mechanism of the graphene oxide reinforced geopolymer (in Chinese, dissertation). Harbin: Harbin institute of Technology, 2016.
[34] YAN S, HE P, JIA D, et al. Effects of graphene oxide on the geopolymerization mechanism determined by quenching the reaction at intermediate states[J]. Rsc Adv, 2017, 7(22): 13498–13508.
[35] YUAN J, HE P, JIA D, et al. In situ processing of MWCNTs/leucite composites through geopolymer precursor[J]. J Eur Ceram Soc, 2017, 37(5): 2219–2226.
[36] YAN S, HE P, JIA D, et al. In-situ preparation of fully stabilized graphene/cubic-leucite composite through graphene oxide/geopolymer[J]. Mater Des, 2016, 101: 301–308.
[37] YAN S, HE P, JIA D, et al. In situ processing of graphene/leucite nanocomposite through graphene oxide/geopolymer[J]. J Am Ceram Soc, 2016, 99(4): 1164–1173.
[38] YAN S, HE P, JIA D, et al. Crystallization kinetics and microstructure evolution of reduced graphene oxide/geopolymer composites[J]. J Eur Ceram Soc, 2016, 36(10): 2601–2609.
[39] YAN S, HE P, JIA D, et al. In situ fabrication and characterization of graphene/geopolymer composites[J]. Ceram Int, 2015, 41(9): 11242–11250.
[40] YAN S, HE P, JIA D, et al. Effect of reduced graphene oxide content on the microstructure and mechanical properties of grapheme-geopolymer nanocomposites[J]. Ceram Int, 2016, 42(1): 752–758. 
[41] YAN S, HE P, JIA D, et al. Effect of fiber content on the microstructure and mechanical properties of carbon fiber felt reinforced geopolymer composites[J]. Ceram Int, 2016, 42(6): 7837–7843.
[42] YAN S, HE P, JIA D, et al. Effects of treatment temperature on the reduction of GO under alkaline solution during the preparation of graphene/geopolymer composites[J]. Ceram Int, 2016, 42(16): 18181–18188.
[43] LIN T S, JIA D C, HE P G, et al. Thermo–mechanical and microstructural characterization of geopolymers with alpha-Al2O3particle filler[J]. Int J Thermo phys, 2009, 30(5): 1568–1577.
[44] LIN T S, JIA D C. Mechanical prorertiesand fracture behavior of electroless Ni-plated short carbon fiber reinforced geoplolymer matrix composities[J]. Int J Thermophys, 2009, 23(6–7): 1371–1376.
[45] YUAN J, HE P, JIA D, et al. SiC fiber reinforced geopolymer composites, part 1: Short SiC fiber[J].Ceram Int, 2016, 42(4): 5345–5352.
[46] 贾屹海. Na–粉煤灰地质聚合物制备与性能研究[D]. 中国矿业大学(北京), 2009.JIA Yihai. Synthesis and characterization of fly-ash-based Na-geopolymer (in Chinese, dissertation). Beijing: China University of  Mining and Technology, 2009.
[47] LIN T, JIA D HE P, et al. Effects of fiber length on mechanical properties and fracture behavior of short carbon fiber reinforced geopolymer matrix composites[J]. Mater Sci Eng A–Struct, 2008, 497(1–2): 181–185.
[48] LIN T, JIA D WANG M, et al. Effects of fibre content on mechanical properties and fracture behaviour of short carbon fibre reinforced geopolymer matrix composites[J]. B Mater Sci, 2009, 32(1): 77–81.
[49] LIN T, JIA D, HE P, et al. In situ crack growth observation and fracture behavior of short carbon fiber reinforced geopolymer matrix composites[J]. Mater Sci Eng A–Struct, 2010, 527(9): 2404–2407.
[50] LIN T, JIA D, HE P, et al. Thermal–mechanical properties of short carbon fiber reinforced geopolymer matrix composites subjected to thermal load[J]. J Cent South Univ T, 2009, 16(6): 81–886.
[51] HE P, JIA D, LIN T, et al. Effects of high-temperature heat treatment on the mechanical properties of unidirectional carbon fiber reinforced geopolymer composites[J]. Ceram Int, 2010, 36(4): 1447–1453.
[52] HE P, JIA D, WANG. M, et al. Improvement of high-temperature mechanical properties of heat treated Cf/geopolymer composites by Sol-SiO2 impregnation[J]. J Eur Ceram Soc, 2010, 30(15): 3053–3061.
[53] HE P, JIA D, WANG. M, et al. Preparation and mechanical properties of carbon fiber reinforced geopolymer composites[J]. Rare Met Mater Eng, 2011, 40: 247–251.
[54] HE P, JIA D, ZHENG. B, et al. SiC fiber reinforced geopolymer composites, part 2: continuous SiC fiber[J]. Ceram Int, 2016, 42(10): 12239–12245.
[55] YUAN J, HE P, ZHANG. P, et al. Novel geopolymer based composites reinforced with stainless steel mesh and chromium powder[J]. Constr Build Mater, 2017, 150: 89–94.
[56] XIA M, SANJAYAN J. Method of formulating geopolymer for 3D printing for construction applications[J]. Mater Des, 2016, 110: 382–390.
[57] ZHONG J, ZHOUG X, HE P G, et al. 3D printing strong and conductive geo-polymer nanocomposite structures modified by graphene oxide[J]. Carbon, 2017, 117: 421–426.
[58] ZHANG Y, WEI S. LING Z, et al. Impact properties of geopolymer based extrudates incorporated with fly ash and PVA short fiber[J]. Constr Build Mater, 2008, 22(3): 370–383.
[59] WANG M R, JIA D C, HE P G, et al. Influence of calcination temperature of kaolin on the structure and properties of final geopolymer[J]. Mater Lett, 2010, 64(22): 2551–2554.
[60] FLETCHER R A, MACKENZIE K J D, NICHOLSON C L, et al. The composition range of aluminosilicate geopolymers[J]. J Eur Ceram Soc, 2005, 25(9): 1471–1477.
[61] DUXSON P, PROVIS J L, LUKEY G C, et al. Understanding the relationship between geopolymer composition, microstructure and mechanical properties[J]. Colloid Surf A, 2005, 269(1–3): 47–58.
[62] KRIVEN W M, BELL J, GORDON M. Geopolymer refractories for the glass manufacturing industry[M]. Hoboken: Wiley, 2004: 57–79.
[63] YUAN J, HE P, JIA D, et al. Effect of curing temperature and SiO2/K2O molar ratio on the performance of metakaolin-based geopolymers[J]. Ceram Int, 2016, 42(14): 16184–16190.
[64] HE P, WANG M, FU S, et al. Effects of Si/Al ratio on the structure and properties of metakaolin based geopolymer[J]. Ceram Int, 2016, 42(13): 14416–14422.
[65] HE P, JIA D WANG S. Microstructure and integrity of leucite ceramic derived from potassium-based geopolymer precursor[J]. J Eur Ceram Soc, 2013, 33(4): 689–698.
[66] 高蓓. 金属/K–PSS 无机聚合物复合材料的力学性能研究[D]. 哈尔 滨: 哈尔滨工业大学, 2008. GAO Bei. Mechanical properties of metal/K-PSS inorganic polymer composites (in Chinese, dissertation). Harbin: Harbin institute of Technology, 2008.
[67] WANG M, JIA D, HE P, et al. Influence of size of fly ash cenosphere on the microstructure and property of 35% fac/geopolymer matrix composite[J]. Rare Metal Mater Eng, 2011, 40: 257–261.
[68] WANG M R, JIA D C, HE P G, et al. Microstructural and mechanical characterization of fly ash cenosphere/metakaolin-based geopolymeric composites[J]. Ceram Int, 2011, 37(5): 1661–1666.
[69] REN D, YAN C, DUAN P, et al. Durability performances of wollastonite, tremolite and basalt fiber-reinforced metakaolin geopolymer composites under sulfate and chloride attack[J]. Constr Build Mater, 2017, 134: 56–66.
[70] MACKENZIE K J D, BOLTON M J. Electrical and mechanical properties of aluminosilicate inorganic polymer composites with carbon  nanotubes[J]. J Mater Sci, 2009, 44(11): 2851–2857.
[71] MACKENZIE K J D. Inorganic polymers (Geopolymer) as advanced materials[M]. Hoboken: Wiley, 2009: 249–261.
[72] ABBASI S M, AHMADI H, KHALAJ G, et al. Microstructure and mechanical properties of a metakaolinite-based geopolymer nanocomposite reinforced with carbon nanotubes[J]. Ceram Int, 2016,42(14): 15171–15176.
[73] BI S, LIU M, SHEN J, et al. Ultrahigh self-sensing performance of geopolymer nanocomposites via unique interface engineering[J]. Acs Appl Mater Inter, 2017, 9(14): 12851–12858.
[74] KHATER H M, GAWAADHAA E L. Effect of firing temperatures on alkali activated Geopolymer mortar doped with MWCNT[J]. Adv Nano Res, 2015, 3(4): 225–242.
[75] KHATER H M, GAWAADHAA E L. Characterization of alkali activated geopolymer mortar doped with MWCNT[J]. Constr Build Mater, 2016, 102: 329–337.
[76] SAAFI M, TANG L, FUNG J, et al. Graphene/fly ash geopolymeric composites as self-sensing structural materials[J]. Smart Mater Struct, 2014, 23(6) 102–112. 
[77] BERNAL S A, BEJARANO J, GARZON C, et al. Performance of refractory aluminosilicate particle/fiber–reinforced geopolymercomposites[J]. Compos B–Eng, 2012, 43(4): 1919–1928.
[78] 何培刚. Cf/铝硅酸盐聚合物及其转化陶瓷基复合材料的研究[D]. 哈 尔滨: 哈尔滨工业大学, 2011. HE Peigang. Processing and characterization of the Cf/geopolymer and derived ceramic matrix composites (in Chinese, dissertation). Harbin: Harbin institute of Technology, 2011.
[79] SONG X I, CUI X M, LIN K S, et al. Hot-pressure forming process of PVC/geopolymer composite materials[J]. Appl Clay Sci, 2013, 73: 51–55.
[80] ZHANG Y, HE P, YUAN J, et al. Effects of graphite on the mechanical and microwave absorption properties of geopolymer based composites[J].Ceram Int, 2017, 43(2): 2325–2332.
[81] YAN S, HE P, JIA D, et al. Effects of high-temperature heat treatment on the microstructure and mechanical performance of hybrid Cf–SiCf–(Al2O3p) reinforced geopolymer composites[J]. Compos B–Eng, 2017, 114: 289–298.
[82] YAN S, HE P, ZHANG Y, et al. Preparation and in-situ high–temperature mechanical properties of Cf–SiCf reinforced geopolymer composites[J]. Ceram Int, 2017, 43(1, Part A): 549–555.
[83] TIAN N, AMIN A, FOSTER S J. The behaviour of steel–fibre-reinforced geopolymer concrete beams in shear[J]. Mag Concr Res, 2013, 65(5): 308–318.
[84] ZHANG Y S, SUN W, LI Z J. Impact behavior and microstructural characteristics of PVA fiber reinforced fly ash–geopolymer boards prepared by extrusion technique[J]. J Mater Sci, 2006, 41(10): 2787–2794.
[85] FODENA J, BALAGURU P, LYON R E. Mechanical properties and fire response of geopolymer structural composites[J]. Soc Adv Mater Process Eng Covina Ca, 1996, 41: 748-758.
[86] 郑斌义. 单向连续 SiCf 增强铝硅酸盐聚合物基复合材料的力学性能[D]. 哈尔滨: 哈尔滨工业大学, 2013. ZHENG Binyi. Mechanical properties of unidirectional SiC fiber reinforced potassium-based geopolymer composites (in Chinese, dissertation). Harbin: Harbin institute of Technology, 2013.
[87] ESKANDER S B, AZIZSM A, EL–DIDAMONY H, et al. Immobilization of low and intermediate level of organic radioactive wastes in cement matrices[J]. J Hazard Mater, 2011, 190(1–3):969–979.
[88] PARIA S, YUETP K. Solidification-stabilization of organic and inorganic contaminants using portland cement: a literature review[J]. Environ Rev, 2006, 14(4): 217–255.
[89] LI Q, SUN Z, TAO D, et al. Immobilization of simulated radionuclide 133Cs+  by fly ash-based geopolymer[J]. J Hazard Mater, 2013, 262: 325–331.
[90] HE P, FU. S, YUAN J, et al. Celsian formation from barium-exchanged geopolymer precursor: Thermal evolution[J]. J Eur Ceram Soc, 2017, 37(13): 4179–4185.
[91] BAGC IC, KUTYLA G P, SEYMOUR K C, et al. Synthesis and characterization of silicon carbide powders converted from metakaolinbased geopolymer[J]. J Am Ceram Soc, 2016, 99(7): 2521–2530.
[92] WANG H, LI H, WANG Y, et al. Preparation of macroporous ceramic from metakaolinite-based geopolymer by calcination[J]. Ceram Int, 2015, 41(9): 11177–11183.
[93] 方祯璋, 吴传威, 朱庭贤. 耐高温无机聚合物胶结材料的开发研 究[J]. 热科学与技术, 2007, 6(2): 178–185. FANG Zhengzhang, WU Chuangwei, ZHU Tingxian. J Therm Sci Technol (in Chinese), 2007, 6(2): 178–185.
[94] WANG K T, TANG Q, CUI X M, et al. Development of near-zero water consumption cement materials via the geopolymerization of tektites and its implication for lunar construction[J]. SCI REP–UK, 2016.
[95] GE Y, YUAN Y, WANG K, et al. Preparation of geopolymer-based inorganic membrane for removing Ni2+ from wastewater[J]. J Hazard Mater, 2015, 299: 711–718.
[96] TAKEDA H, HASHIMOTO S, HONDA S, et al. The coloring ofgeopolymers by the addition of copper compounds[J]. Ceram Int, 2014, 40(5): 6503–6507.
[97] HASHIMOTO S, MACHINO T, TAKEDA H, et al. Iwamoto, Antimicrobial activity of geopolymers ion-exchanged with copper ions[J]. Ceram Int, 2015, 41(10): 13788–13792. 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com