首页期刊信息编委及顾问期刊发行联系方式使用帮助留言板ENGLISH
位置:首页 >> 正文
吸波结构型陶瓷基复合材料
作者:成来飞   殷小玮 张立同 
单位:西北工业大学 超高温结构复合材料重点实验室 西安 710072 
关键词:吸波结构一体化 陶瓷基复合材料 高温 
分类号:TB332
出版年,卷(期):页码:2017,45(12):1738-1747
DOI:10.14062/j.issn.0454-5648
摘要:

随着雷达探测技术的迅猛发展,为满足航空航天飞行器关键热结构件的隐身要求,材料需兼具吸波和承载性能,因此迫切需要发展高温吸波结构型材料。介绍了吸波结构型复合材料设计应遵循的吸波性能匹配原则(阻抗匹配原则和衰减原则)和力学性能匹配原则(弹性模量匹配原则、界面脱黏原则和热膨胀系数匹配原则),综述了高温吸波结构型陶瓷基复合材料的研究进展,展望了根据吸波/力学匹配原则设计性能优异的吸波/结构一体化材料的研究趋势。

With the rapid development of radar detection technology, materials with wave-absorbing and load-bearing performance are needed in order to satisfy the stealth requirements of aerospace vehicle key thermal structures. It is thus necessary to develop the high-temperature wave-absorbing structural materials. In this paper, the wave-absorbing matching principles (impedance matching and attenuation principles) and mechanical matching principles (elastic modulus matching、interfacial debonding and thermal expansion coefficient matching principles) of the wave-absorbing structural composites were introduced. Recent development of the high-temperature wave-absorbing structural ceramic matrix composites was reviewed. In addition, the development trend of designing absorbing structural materials with excellent properties according to the wave-absorbing and mechanical matching principles was also prospected.

基金项目:
国家自然基金(51632007)资助。
作者简介:
成来飞(1962—),男,博士,教授。
参考文献:
[1] 向迎春, 曲长文, 平殿发, 等. 对消式舰船有源隐身技术研究[J].舰船电子工程, 2010, 30(2): 103–106.XIANG Y C, QU C W, PING D F, et al. Ship Electron Eng(inChinese), 2010, 30(2): 103–106.
[2] 杨青真, 王红梅, 常泽辉. 飞行器隐身技术发展状况[J]. 航天电子对抗, 2004(6): 55–58.YANG Z Q, WANG H M, CHANG Z H. Aerosp Electron Warfare(inChinese), 2004(6): 55–58.
[3] 康永. 吸波材料研究进展[J]. 江苏陶瓷, 2011, 44(1): 1–2.KANG Y. Jiangsu Ceram(in Chinese), 2011, 44(1): 1–2.
[4] 周倩, 殷小玮, 张立同, 等. 微波可调谐超材料吸波体研究进展[J].科技导报, 2016, 34(18): 40–46.ZHOU Q, YIN X W, ZHANG L T, et al. Sci Technol Rev(in Chinese),2016, 34(18): 40–46.
[5] 周万城, 王婕, 罗发, 等. 高温吸波材料研究面临的问题[J]. 中国材料进展, 2013(8): 463–472.ZHOU Wancheng, WANG Jie, LUO Fa, et al. Mater Chin(in Chinese),2013(8): 463–472.
[6] 刘海韬, 程海峰, 王军, 等. 高温结构吸波材料综述[J]. 材料导报,2009, 23(19): 24–27.LIU Haitao, CHENG Haifeng, WANG Jun, et al. Mater Rev(inChinese), 2009, 23(19): 24–27.
[7] DUANW Y, YIN X W, LI Q, et al. A review of absorption properties insilicon-based polymer derived ceramics[J]. J Eur Ceram Soc, 2016,36(15): 3681–3689.
[8] XUEJ M, YIN X W, PAN H X, et al. Crystallization mechanism on CVD Si3N4–SiCN composite ceramics annealed in N2 atmosphere and their excellent EMW absorption properties[J]. J Am Ceram Soc, 2016,99(8): 2672–2679.
[9] YIN X W, CHENG L F, ZHANG L T, et al. Fibre-reinforced multifunctional SiC matrix composite materials[J]. Int Mater Rev, 2017,62(3): 117–172.
[10] VALAGIANNOPOULOS C A, TUKIAINEN A, AHO T, et al. Perfect magnetic mirror and simple perfect absorber in the visible spectrum[J]. Phys Rev B, 2015, 91(11): 115305.
[11] 黄爱萍, 冯则坤, 聂建华, 等. 干涉型多层吸波材料研究[J]. 材料导报, 2003, 17(4): 21–24.HUANG Aiping, FENG Zekun, NIE Jianhua, et al. Mater Rev(in Chinese), 2003, 17(4): 21–24.
[12] ROSA I M D, DINESCU A, SARASINI F, et al. Effect of short carbon fibers and MWCNTs on microwave absorbing properties of polyester composites containing nickel-coated carbon fibers[J]. Compos Sci Technol, 2010, 70(1): 102–109.
[13] MICHELI D, APOLLO C, PASTORE R, et al. X-band microwave characterization of carbon-based nanocomposite material, absorption capability comparison and RAS design simulation[J]. Compos Sci Technol, 2010, 70(2): 400–409.
[14] CHAMBERS B, TENNANT A. Optimised design of Jaumann radar absorbing materials using a genetic algorithm[J]. IEE Proceedings-Radar, Sonar Navigat, 1996, 143(1): 23–30.
[15] EVANS A G, HE M Y, HUTCHINSON J W. Interface debonding and fiber cracking in brittle matrix composites[J]. J Am Ceram Soc, 1989, 72(12): 2300–2303.
[16] HE M Y, HUTCHINSON J W. Crack deflection at an interface between dissimilar elastic materials[J]. Int J Solids Struct, 1994, 25(9): 1053–1067.
[17] SIGL L S, EVANS A G. Effects of residual stress and frictional sliding on cracking and pull-out in brittle matrix composites[J]. Mech Mater, 1989, 8(1): 1–12.
[18] KUNTZ M, MEIER B, Grathwohl G. Residual stresses in fiber-reinforced ceramics due to thermal expansion mismatch[J]. J Am Ceram Soc, 1993, 76(10): 2607–2612.
[19] ISHIKAWA T. Advances in inorganic fibers[M]. London: Springer Berlin Heidelberg, 2005: 109–144.
[20] Naslain R. Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview[J]. Compos Sci Technol, 2004, 64(2): 155–170.
[21] BANSAL N P. Handbook of ceramic composites[M]. London:Springer US, 2005,8 (4): 57.
[22] LIU H T, TIAN H. Mechanical and microwave dielectric properties of SiCf/SiC composites with BN interphase prepared by dip-coating process[J]. J Eur Ceram Soc, 2012, 32(32): 2505–2512.
[23] ICHIKAWA H. Recent advances in Nicalon ceramic fibres including Hi-Nicalon type S[J]. Ann Chim Sci Matér, 2000, 25(7): 523–528.
[24] JONES R H. SiC/SiC Composites for advanced nuclear applications[J]. 27th Annu Cocoa Beach Conf Adv Ceram Compos B: Ceram Eng Sci Proc, 2003(24): 261–267.
[25] SONG H H, ZHOU W C, LUO F, et al. Temperature dependence of dielectric properties of SiCf/PyC/SiC composites[J]. Mater Sci Eng B, 2015(195): 12–19.
[26] YAMAMURA T, ISHIKAWA T, SHIBUYA M, et al. Development of a new continuous Si–Ti–C–O fibre using an organometallic polymer precursor[J]. J Mater Sci, 1988, 23(7): 2589–2594.
[27] CHAIM R, HEUER A H, CHEN R T. Microstructural and microchemical characterization of silicon carbide and silicon carbonitride ceramic fibers produced from polymer precursors[J]. J Am Ceram Soc, 2005, 71(11): 960–969.
[28] MOCAER D, PAILLER R, NASLAIN R, C. Richard, et al. Si–C–N ceramics with a high microstructural stability elaborated from the pyrolysis of new polycarbosilazane precursors[J]. J Mater Sci, 1993,28(10): 2632–2638.
[29] CHOLLON G, PAILLER R, NASLAIN R, et al. Thermal stability of a PCS-derived SiC fibre with a low oxygen content (Hi-Nicalon)[J]. J Mater Sci, 1997, 32(2): 327–347.
[30] MO R, YIN X W, YE F, et al. Mechanical and microwave absorbing properties of Tyranno® ZMI fiber annealed at elevated temperatures[J]. Ceram Int, 2017, 43(12): 8922–8931.
[31] DING D H, ZHOU W C, ZHANG B A, et al. Complex permittivity and microwave absorbing properties of SiC fiber woven fabrics[J]. J Mater Sci, 2011, 46(8): 2709–2714.
[32] YE F, ZHANG L T, YIN X W, et al. The improvement of wave-absorbing ability of silicon carbide fibers by depositing boron nitride coating[J]. Appl Surf Sci, 2013, 270: 611–616.
[33] TAN E, KAGAWA Y, DERICIOGLU AF. Electromagnetic wave absorption potential of SiC-based ceramic woven fabrics in the GHz range[J]. J Mater Sci, 2009, 44(5): 1172–1179.
[34] YE F, ZHANG L T, YIN X W, et al. Dielectric and electromagnetic wave absorbing properties of two types of SiC Fibres with different compositions[J]. J Mater Sci Technol, 2013, 29(1): 55–58.
[35] DUAN W Y, YIN X W, LI Q, et al. Synthesis and microwave absorption properties of SiC nanowires reinforced SiOC ceramic[J]. J Eur Ceram Soc, 2014, 34(2): 257–266.
[36] LI Q, YIN X W, DUAN W Y, et al. Electrical, dielectric and microwave-absorption properties of polymer derived SiC ceramics in X band[J]. J Alloys Compd, 2013, 565: 66–72.
[37] ZHENG G, YIN X, WANG J, et al. Complex permittivity and microwave absorbing property of Si3N4–SiC composite ceramic[J]. J Mater Sci Technol, 2012, 28(8): 745–750.
[38] KUMAR A, AGARWALA V, SINGH D. Effect of milling on dielectric and microwave absorption properties of SiC based composites[J]. Ceram Int, 2014, 40(1): 1797–1806.
[39] 葛凯勇, 王群, 张晓宁, 等. 碳化硅吸波性能改进的研究[J]. 功能 材料与器件学报, 2002, 8(3): 263–266.GE Kaiyong, WANG Qun, ZHANG Xiaoning, et al. J Funct Mater Dev(in Chinese), 2002, 8(3): 263–266.
[40] 王军. 掺混型碳化硅纤维微波吸收剂的制备[J]. 宇航材料工艺,1997, 27(4): 61–64.WANG Jun. Aerosp Mater Technol (in Chinese), 1997, 27(4): 61–64.
[41] 宋登元. SiC 器件基本制备工艺的原理与发展现状[J]. 半导体技术,1994(2): 5–9.SONG Dengyuan. Semicond Technol (in Chinese), 1994(2): 5–9.
[42] 李权. PDCs–SiC(N)陶瓷及其复合材料的电磁吸波特性及优化[D].西安: 西北工业大学, 2015.LI Quan. Electromagnetic absorbing properties and its optimization of PDCs–SiC(N) ceramics and composites (in Chinese, dissertation).Xi'an: Northwestern Polytechnical University, 2015.
[43] HALUSCHKA C, ENGEL C, RIEDEL R. Silicon carbonitride ceramics derived from polysilazanes Part II. Investigation of electrical properties[J]. J Eur Ceram Soc, 2000, 20(9): 1365–1374.
[44] BHANDAVAT R, KUHN W, MANSFIELD E, et al. Synthesis of polymer-derived ceramic Si(B)CN–carbon nanotube composite by microwave-induced interfacial polarization[J]. ACS Appl Mater Inter, 2011, 4(1): 11–16.
[45] YE F, ZHANG L T, YIN X W, et al.Dielectric and EMW absorbing properties of PDCs–SiBCN annealed at different temperatures[J]. J Eur Ceram Soc, 2013, 33(8): 1469–1477.
[46] 孟凡君, 茹淼焱. Si-C-N 陶瓷在雷达吸收方面的应用研究[J]. 材料 科学与工艺, 2003, 11(1): 93–96. MENG Fanjun, RU Miaoyan. Mater Sci Technol (in Chinese), 2003,11(1): 93–96.
[47] IZUMI A, ODA K. Deposition of SiCN films using organic liquid materials by HWCVD method[J]. Thin Solid Films, 2006, 501(1):195–197.
[48] XUE J M, YIN X W, YE F, et al. Thermodynamic analysis on the codeposition of SiC–Si3N4 composite ceramics by chemical vapor deposition using SiCl4–NH3–CH4–H2–Ar mixture gases[J]. J Am Ceram Soc, 2013, 96(3): 979–986.
[49] YE F, ZHANG L T, YIN X W, et al.Thermodynamic and kinetic studies on the deposition of silicon carbon nitride from CH3SiCl3–C3H6–NH3–H2–Ar and its excellent electromagnetic absorbing property[J]. J Alloys Compd, 2014, 589: 579–589.
[50] LI Q, YIN X W, CHENG L F. Dielectric properties of Si3N4–SiCN composite ceramics in X-band[J]. Ceram Int, 2012, 38(7): 6015–6020.
[51] LIU X F, ZHANG L T, YIN X W, et al. The microstructure of SiCN ceramics and their excellent electromagnetic wave absorbing properties[J]. Ceram Int, 2015, 41(9): 11372–11378.
[52] LIU Y S, CHAI N, LIU X F, et al. The Microstructure and dielectric properties of SiBCN ceramics fabricatedvia LPCVD/CVI[J]. J Am Ceram Soc, 2015, 98(9):2703–2706.
[53] YE F, ZHANG L T, YIN X W, et al. Dielectric and microwave-absorption properties of SiC nanoparticle/SiBCN composite ceramics[J]. J Eur Ceram Soc, 2014, 34(2): 205–215.
[54] ZHANG Y J, YIN X W, YE F, et al. Effects of multi-walled carbon nanotubes on the crystallization behavior of PDCs–SiBCN and their improved dielectric and EM absorbing properties[J]. J Eur Ceram Soc,2014, 34(5): 1053–1061.
[55] 马晓康. Ti3Si(Al)C2 改性 SiC/SiC 复合材料的制备工艺和力学性能研究[D]. 西北工业大学, 2016. MA Xiaokang. Investigation on preparation technology and mechanical properties of Ti3Si(Al)C2 modified SiC/SiC composites (inChinese, dissertation). Xi'an: Northwestern Polytechnical University,
2016.
[56] FABER K T. Ceramic composite interfaces:properties and design[J]. Annu Rev Mater Res, 1997, 27(27): 499–524.
[57] KERANS R J, HAY R S, PARTHASARATHY T A, et al. Interface design for oxidation-resistant ceramic composites[J]. J Am Ceram Soc, 2010, 85(85): 2599–2632.
[58] NASLAIN R R, PAILLER R, BOURRAT X. Synthesis of highly tailored ceramic matrix composites by pressure-pulsed CVI[J]. Solid State Ionics, 2001, 141–142(5): 541–548.
[59] NASLAIN R R, DUGNE O, GUETTE A, et L. Cotteret.Boron nitride interphase in ceramic-matrix composites[J]. J Am Ceram Soc, 1991, 74(10): 2482–2488.
[60] PATIBANDLA N. Chemical vapor deposition of boron nitride[J]. J Electrochem Soc, 1992, 139(12): 457–462.
[61] NASLAIN RR. The design of the fibre-matrix interfacial zone in ceramic matrix composites[J]. Compos Part A-Appl S, 1998, 29(9–10): 1145–1155.
[62] SINGH R N, BRUN M K. Effect of boron nitride coating on fiber-matrix interactions[J]. Ceram Eng Sci Proc, 2008, 3(3): 636–643.
[63] JACQUES S, GUETTE A, LANGLAIS F, et al. Preparation and characterization of 2D SiC/SiC composites with composition-graded C(B) interphase[J]. J Eur Ceram Soc, 1997, 17(9): 1083–1092.
[64] TRESSLER R E. Recent developments in fibers and interphases for high temperature ceramic matrix composites[J]. Compos Part A-Appl S, 1999, 30(4): 429–437.
[65] MARTÍNEZ-FERNÁNDEZ J, MORSCHER G N. Room and elevated temperature tensile properties of single tow Hi-Nicalon, carbon interphase, CVI SiC matrix minicomposites[J]. J Eur Ceram Soc, 2000, 20(14): 2627–2636.
[66] JACQUES S, LOPEZ-MARURE A, VINCENT C, et al. SiC/SiC minicomposites with structure-graded BN interphases[J]. J Eur Ceram Soc, 2000, 20(12): 1929–1938.
[67] 冯春祥, 薛金根, 宋永才. SiC 纤维研究进展[J]. 高科技纤维与应用, 2003, 28(1): 15–19. FENG Chunxiang, XUE Jingen, SONG Yongcai. Hi-Tech Fiber Appl(in Chinese), 2003, 28(1): 15–19.
[68] 杨丽君, 王明存. 高温吸波材料研究新进展与趋势[J]. 宇航材料工 艺, 2012, 42(3): 8–12. YANG Lijun, WANG Mingcun. Aerosp Mater Technol(in Chinese), 2012, 42(3): 8–12.
[69] HU Y, LUO F, DUAN S, et al. Mechanical and dielectric properties of SiCf/SiC composites fabricated by PIP combined with CIP process[J]. Ceram Int, 2016, 42(6): 6800–6806.
[70] SHI Y M, LUO F, DING DH, et al. Effects of thermal oxidation on microwave-absorbing and mechanical properties of SiCf/SiC composites with PyC interphase[J]. T Nonferr Metal Soc, 2015, 25(5): 1484–1489.
[71] TIAN H, LIU H T, CHENG H F. Mechanical and microwave dielectric properties of KD-I SiCf/SiC composites fabricated through precursorinfiltration and pyrolysis[J]. Ceram Int, 2014, 40(7): 9009–9016.
[72] MU Y, ZHOU W C, HU Y, et al. Enhanced microwave absorbing properties of 2.5D SiCf/SiC composites fabricated by a modified precursor infiltration and pyrolysis process[J]. J Alloys Compd, 2015,
637: 261–266.
[73] MU Y, ZHOU W C, DING D H, et al. Influence of dip-coated boron nitride interphase on mechanical and dielectric properties of SiCf/SiC composites[J]. Mater Sci Eng A, 2013, 578(8): 72–79.
[74] MU Y, ZHOU W C, LUO F, et al. Effects of BN/SiC dual-layerinterphase on mechanical and dielectric properties of SiCf/SiCcomposites[J]. Ceram Int, 2014, 40(2): 3411–3418.
[75] MU Y, ZHOU W C, HU Y, et al. Improvement of mechanical and dielectric properties of PIP-SiCf/SiC composites by using Ti3SiC2 as inert filler[J]. Ceram Int, 2014, 41(3): 4199–4206.
[76] MU Y, ZHOU W C, WAN F, et al. High-temperature dielectric and electromagnetic interference shielding properties of SiCf/SiC composites using Ti3SiC2 as inert filler[J]. Compos Part A-Appl S, 2015, 77: 195–203.
[77] MU Y, ZHOU W C, HU Y, et al. Temperature-dependent dielectric and microwave absorption properties of SiCf/SiC–Al2O3 composites modified by thermal cross-linking procedure[J]. J Eur Ceram Soc, 2015, 35(11): 2991–3003.
[78] MU Y, ZHOU W C, WANG H, et al. Mechanical and dielectric properties of 2.5D SiCf/SiC–Al2O3 composites prepared via precursor infiltration and pyrolysis[J]. Mater Sci Eng A, 2014, 596(3): 64–70.
[79] WAN F, LUO F, ZHOU Y, et al. A glass coating for SiC fiber reinforced aluminum phosphate matrix (SiCf/AlPO4) composites for high-temperature absorbing wave applications[J]. Surf Coat Technol, 2015, 264: 9–16.
[80] DING D H, SHI Y M, WU Z H, et al. Electromagnetic interference shielding and dielectric properties of SiCf/SiC composites containing pyrolytic carbon interphase[J]. Carbon, 2013, 60(12): 552–555.
[81] WAN F, LUO F, SHI Y M, et al. Mechanical and dielectric properties of SiCf/AlPO4composites with multi-walled carbon nanotubes[J]. Int J Appl Ceram Tec, 2014, 12(5): 1045–1053.
[82] LIU H, CHENG H, WANG J, et al. Dielectric properties of the SiC fiber-reinforced SiC matrix composites with the CVD SiC interphases[J]. J Alloys Compd, 2010, 491(1–2): 248–251.
[83] MU Y, ZHOU W C, WANG C, et al. Mechanical and electromagnetic shielding properties of SiCf/SiC composites fabricated by combined CVI and PIP process[J]. Ceram Int, 2014, 40(7): 10037–10041.
 
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com