首页期刊信息编委及顾问期刊发行联系方式使用帮助留言板ENGLISH
位置:首页 >> 正文
硅酸铋闪烁晶体及其掺杂改性
作者:徐家跃 冯海威 潘芸芳   范世马岂 
单位:上海应用技术大学材料科学与工程学院 晶体生长研究所 上海 201418 
关键词:硅酸铋晶体 坩埚下降法 闪烁发光 掺杂 析晶行为 
分类号:O482
出版年,卷(期):页码:2017,45(12):1748-1757
DOI:10.14062/j.issn.0454-5648
摘要:

硅酸铋(Bi4Si3O12, BSO)晶体是一种具有闪铋矿结构的氧化物闪烁材料,其衰减时间快于锗酸铋(BGO)晶体,光输出高于钨酸铅(PWO)晶体,被认为是双读出量能器最佳的候选材料之一。综述了硅酸铋晶体在相关系、晶体生长、闪烁性能、

掺杂改性等方面的研究进展,比较了不同生长方法的优缺点,总结了稀土掺杂对硅酸铋晶体性能以及结晶习性的影响。研究发现:少量 Dy3+掺杂能显著提高硅酸铋晶体的光输出,其发光机理可能与 Dy3+的占位有关,高浓度掺杂因为引入竞争性的发光中心而导致光输出下降。此外,掺杂硅酸铋晶体在荧光发光和激光等领域有潜在应用。

Bismuth silicate (i.e., Bi4Si3O12, BSO) single crystal is an excellent oxide scintillation material with the eulytite structure. It shows a decay time (100 ns) faster than that of BGO crystal and its light yield is greater than that of PWO crystal, thus it is regarded as one of the promising candidates for dual readout calorimeters. This review represented recent development of the phase diagram, growth, scintillation properties and doping effects of BSO crystal. The advantages and disadvantages of different growth techniques were discussed. The influence of dopant on the scintillation properties and crystallization behavior was summarized. The improvement of scintillation properties by doping Dy3+ ions is attributed to the compensation of Bi3+ vacancy by a small amount of Dy3+ ions. In addition, Re-doped BSO crystals show some potential applications as phosphors and laser materials.

基金项目:
国家自然科学基金(51342007, 51572175);“973”前期专项(2011CB612310)资助
作者简介:
徐家跃(1965—),男,博士,教授。
参考文献:

[1] HE C F, FANS J, LIAOJ Y, et al. Growth and characterization of BGO[J]. Prog Crystal Growth Charact, 1985, 11(4): 253–262.

[2] FANS J, SHEN G S, LI J L, et al. Industrial bridgman growth of large size BGO crystals with special shapes[J]. Cryst Prop Prep 1991,36–38(42): 42–45.
[3] 徐家跃, 范世马岂. 氧化物晶体坩埚下降法生长[J]. 人工晶体学报,2002, 31(3): 298–304.XU Jiayue, FAN Shiji. J Synth Cryst (in Chinese), 2002, 31(3):298–304.
[4] 徐家跃. 坩埚下降法晶体生长[M]. 北京: 化学工业出版社, 2015:21–29.
[5] 赵景泰, 王红, 金滕滕, 等. 闪烁晶体材料的研究进展[J]. 中国材料进展, 2010, 29(10): 40–48.ZHAO Jingteng, WANG Hong, JIN Tengeng. et al. Mater China(inChinese), 2010, 29(10): 40–48.
[6] 陈俊锋. 大尺寸锗酸铋闪烁晶体与暗物质粒子探测[J]. 现代物理知识, 2016, 28: 23–30.CHEN Junfeng. Mode Phys (in Chinese), 2016, 28(6): 23–30.
[7] KOBAYASHI M, MORIMOTO K, YOSHIDA H, et al. Bismuthsilicate as a scintillating material for electromagnetic shower detectors[J]. Nucl Instrum Methods Phys Res, 1983, 205(1): 133–136.
[8] W, ZHOU Y, GUO FY, et al.A study on segregation layers of Bi4Si3O12 crystal grown by the Bridgman method[J]. J Cryst Growth, 2013, 377: 160–163.
[9] 费一汀, 范世马岂. Bi2O3–SiO2 系统的相关系和析晶行为的研究进展[J]. 无机材料学报, 1997, 12(4): 469–476. FEI Yiting, FAN Shiji. J Inorg Mater (in Chinese), 1997, 12(4):469–476.
[10] KARGIN Y F, ZHEREB V P, SKORIKOV V M. Stable andmetastable phase equilibria in the Bi2O3–SiO2 system[J]. Zh Neorg Khim, 1991, 36(10): 261l–2616.
[11] 费一汀, 孙仁英. 范世马岂, 等. Bi2O3-SiO2 系统相图的研究[J]. 无 机材料学报, 1998, 37(6): 798–802. FEI Yiting, SUN Renying, FAN Shiji, et al. J Inorg Mater (in Chinese),1998, 37(6): 798–802.
[12] 费一汀, 范世马岂, 孙仁英, 等. Bi2SiO5 的亚稳定相平衡的研究[J].硅酸盐学报, 1999, 27: 230–236.FEI Yiting, FAN Shiji, SUN Renying, et al. J Chin Ceram Soc, 1999,27: 230–236.
[13] FEI Y T, FAN S J, SUN R Y, et al. Study on phase diagram of Bi2O3–SiO2 system for Bridgman growth of Bi4Si3O12 single crystal[J]. Prog Crystal growth and charact, 2000, 40, 183–188.
[14] KOBAYASHI M, HARADA K, HIROSE Y, et al. Large-size bismuth silicate (Bi4Si3O12) scintillating crystals of good quality[J]. Nucl Instrum Methods Phys Res, 1997, 400(2): 392–400.
[15] PHILIPSBOM H V. Croissance d'eulytine Bi4Si3O12 et des composes substitues Bi4Ge3O12, par la methode Czochralski[J]. J Cryst Growth, 1971, 11(3): 348–350.
[16] HUA J, KIM H J, ROOH G, et al. Czochralski growth and scintillation properties of Bi4Si3O12, (BSO) single crystal[J]. Nucl In strum Methods Phys Res, 2011, 648(1):73–76.
[17] ZHURAVLEVA M, CHANI V I, YANAGIDA T, et al. The micro-pulling-down growth of Bi4Si3O12, (BSO) and Bi4Ge3O12, (BGO) fiber crystals and their scintillation efficiency[J]. J Cryst Growth, 2008, 310(7): 2152–2156.
[18] ISHII M, HARADA K, SENGUTTUVAN N, et al. Crystal growth of BSO (Bi4Si3O12) by vertical Bridgman method[J]. J Cryst Growth, 1999, 205(1/2): 191-195.
[19] 孙仁英, 范世马岂, 吴金娣, 等. 石英晶体在 Bi4Si3O12 熔体中析出形态及机理[J]. 人工晶体学报, 1997, 26(3/4): 206.SUN Renying, FAN Shiji, WU Jindi. et al. J Synth Cryst (in Chinese),1997, 26(3/4): 206.
[20] 范世马岂, 孙仁英, 吴金娣, 等. Bi4Si3O12 熔体的析晶行为[J]. 人工 晶体学报, 1997, 26(3/4): 300. FAn Shiji, SUN Renying, WU Jindi, et al. J Synth Cryst (in Chinese), 1997, 26(3/4): 300.
[21] XU J Y, WANG H, HE Q B, et al. Bridgman growth of Bi4Si3O12scintillation crystals[J]. J Chin Ceram Soc, 2009, 37(2):295–298.
[22] XU J Y, WANG J, CHEN W, et al. Synthesis, Growth and Scintillation Properties of Large Size Bi4Si3O12 Crystals[J]. J. Inorg Mater, 2016,31(10): 1147–1150.
[23] ISHII M, HARADA K, HIROSE Y, et al. Development of BSO (Bi4Si3O12) crystal for radiation detector [J]. Opt Mater, 2002, 19:201–212.
[24] 廖晶莹. 锗酸铋晶体缺陷和小面生长[J]. 硅酸盐学报, 1994, 22(6):
586–591.
LIAO Jingying. J Chin Ceram Soc, 1994, 22(6): 586–591.
[25] NIKL M, YOSHIKAWA A. Recent R&D trends in inorganic single-crystal scintillator materials for radiation detection[J]. Adv Opt Mater, 2015, 3(4): 463–481.
[26] ICOANNIS V, STRATOS D, CHRISTOS M, et al. Investigation of luminescent properties of LSO:Ce,LYSO:Ceand GSO:Ce crystal scintillators under low-energy g-ray excitation used in nuclear imaging[J]. NuclInstrum Methods Phys Res Sect A, 2007, 581(1): 99–102.
[27] NIKL M. Scintillation detectors for X-rays[J]. Meas Sci. Technol, 2006, 17(4): 37–54.
[28] 何景棠, 朱国义, 陈端保, 等. 硅酸铋(BSO)晶体闪烁性能研究[J]. 高能物理与核物理, 1997, 21(10): 886–890. HE Jingtang, ZHU Guoyi, CHEN Ruibao, et al. High Energ Phys Nuc (in Chinese), 1997, 21(10): 886–890.
[29] SHEN H, XU J Y, PING W J et al. Growth, mechanical and thermal properties of Bi4Si3O12 single crystals[J]. Chin Phys Lett, 2012, 29(7): 76501–76504. [30] FEI Y T, FAN S J, SUN R Y, et al. Bridgman growth of Bi4Si3O12 scintillation crystals and doped effects on radiation resistance[J]. Prog Cryst Growth Charact Mater, 2000, 40(1): 189–194.
[31] FEI Y T,SUN R Y,FAN S J, et al. Vertical Bridgman growth and scintillation properties of doped Bi4Si3O12 crystals[J]. Cryst Res Technol, 1999, 34(9): 1149–1156.
[32] XU J Y, YANG B B, ZHANG Y. Development of doped Bi4Si3O12 crystals for scintillation, laser and LED applications[J]. Mater Focus, 2015, 4(3): 20–27.
[33] ZHANG Y, XU J Y, LU B L, Spectroscopic properties of Dy3+: Bi4Si3O12 single crystal[J]. J Alloys Compd, 2014, 582(1): 635-639.
[34] ZHANG Y, XU J Y, CUI Q Z, et al. Eu3+-doped Bi4Si3O12 red phosphor for solid state lighting: micro wave synthesis, characterization, photoluminescence properties and thermal quenching mechanisms[J]. Sci Rep, 2017, 7: 42464–42475.
[35] YANG B B, XU J Y,ZHANG Y, et al. Improvement and luminescent mechanism of Bi4Si3O12 scintillation crystals by Dy3+ doping[J]. Nucl Instrum Methods Phys Res, Sect A, 2016, 807: 1–4.
[36] 温裕贤, 张彦, 储耀卿, 等. Ho3+掺杂 Bi4Si3O12 晶体的生长与光谱特性[J]. 硅酸盐学报, 2016, 44(10): 1446–1450. WEN Yuxian, ZHANG Yan, CHU Yaoqing, et al. J Chin Ceram Soc, 2016, 44(10): 1446–1450.
[37] HARADA K, ISHII M, SENGUTTUVAN N, et al. Scintillation characteristics and radiation damage of Ce-doped Bi4Si3O12 single crystals[J]. J pn J Appl Phys, 2001, 40(3A): 1360–1366.
[38] 汪美玲, 徐家跃, 张彦, 等. Dy3+掺杂 Bi4Si3O12`晶体生长及其热释光特性[J]. 无机材料学报, 2016, 31(10): 1068–1072. WANG Meiling, XU Jiayue, ZHANG Yan, et al.J Inorg Mater (in Chinese), 2016, 31(10): 1068–1072.
[39] XIONG ZY, XU JY, ZHANG Y, et al. Emission spectra and thermo luminescence of rare-earth-doped bismuth silicate crystals grown by modified Bridgman method[J]. J Cryst Growth, 2014, 401(9):305–307.
[40] N SENGUTTUVAN, N KIDOKORO, K OOTSUKA. Crystal growth and optical properties of Bi4Si3O12:Nd[J]. J Cryst Growth, 2001,229(1): 188–192.
[41] 费一汀, 孙仁英, 范世马岂. 过渡金属元素(Fe 和 Cr)掺杂 Bi4Si3O1晶体闪烁性能的研究[J]. 无机材料学报, 1999, 14(3): 357–362. FEI Yiting, SUN Renying, FAN Shiji. J Inorg Mater (in Chinese),1999,14(3): 357–362.
[42] ZHANG Y, XU JY, HE QB,et al. Bridgman growth and characterization of Bi4(GexSi1–x) 3O12 mixed crystals[J]. J Cryst Growth, 2013, 362(1): 121–124.
[43] JIANG H, ROOH G, KIM HJ, et al. Scintillation properties of Bi4(GexSi1–x)3O12 single crystals grown by Czochralski method[J]. J Cryst Growth, 2013, 367(6): 73–76.
[44] VAITHIANATHAN V, SANTHANARAGHAVAN P. Growth and characterization of BGSO single crystal[J]. Mater Chem Phys, 2002, 78: 1–5.
[45] JIANG H, GULROOH, KIM HJ, PARK H, et al. Scintillation properties of Bi4(Ge1–xSix)3O12 single crystals grown by Czochralski method[J]. J Cryst Growth, 2013, 367(6): 73–76.
[46] XIONG Z Y, Xu J Y, ZHANG Y, et al. Fluorescence and thermo luminescence of bismuth silicate-germanate (Bi4(GexSi1–x)3O12)crystals[J]. Mater Res In nov, 2014, 18(S2): 294–298.
[47] SHIMIZU H, MIYAHARA F, HARIU H, et al. First beam test on a BSO electromagnetic alorimeter[J]. Nucl In Strum Methods Phys Res A, 2005, 550(1): 258–266.
[48] ISHIKAWA T, FUJIMURA H, HASHIMOTO R, et al. A detailed testof a BSO calorimeter with100–800 Me V positrons[J]. Nucl Instrum Methods Phys Res A, 2012, 694(6): 348–360.
[49] 肖学峰, 徐家跃, 向卫东. 双读出量能器用闪烁晶体研究进展[J]. 无机材料学报, 2013, 28(4): 347–357. XIAO Xuefeng, XU Jiayue, XIANG Weidong. J Inorg Mater (in Chinese), 2013, 28 (4): 347–357.
[50] AKCHURIN N, ALWARAWRAH M, CARDINI A, et al. Dual-readout calorimetry with crystal calorimeters[J]. Nucl Instrum Methods Phys  Res, Sect A, 2009, 598(3): 710–721.
[51] AKCHURIN N, BEDESCHI F, CARDINI A, et al. A comparison of BGO and BSO crystals used in the dual-readout mode[J]. Nucl Instrum Methods Phys Res, Sect A, 2011, 640(1): 91–98.
[52] LIRA C A, CAMARILLO I, CAMARILLO E, et al. Spectroscopic characterization of Er3+ transitions inBi4Si3O12[J]. J Phys Condens Matter, 2004, 16(32): 5925–5936.
[53] WANG H, CHEN Y Y, HUANG J H, et al. Spectroscopic properties and continuous-wave laser operation of Yb: Bi4Si3O12 crystal[J]. Opt
Express, 2014, 22(18): 21866–21871.
[54] ISBER S, TABBAL M, CHRISTIDIS T, et al. Crystal-field investigations and magnetic properties of Nd3+-doped Bi4Si3O12[J]. Phys Rev B, 2005, 21(7): 1763–1769.
[55] 魏钦华. Bi4Si3O12 和 Gd2Si2O7 基材料的组合筛选及荧光性能研 究[D]. 上海: 上海硅酸盐研究所, 2014. WEI Qinhua. Combinatorial screening and study on luminescence properties of doped Bi4Si3O12 and Gd2Si2O7 (in Chinese, dissatation). Shanghai: Shanghai Institute of Ceramic, Chinese Academy of Sciences, 2014.
[56] YANG B B, XU J Y, ZHANG Y, et al. Yellow emitting phosphor Dy: Bi4Si3O12crystal for LED application[J]. Mater Lett, 2014, 135(10):176–179.
[57] YANG B B, XU J Y, ZHANG Y, et al. Bridgman growth, luminescence and energy transfer studies of Tm3+ or/and Dy3+ co-doped Bi4Si3O12 crystal phosphor[J]. J Ceram Process Res, 2016, 17(6): 537–542.
[58] SUZUKI H, TOMBRELLO T A, MELCHER C L, et al. Light emission mechanism of cerium doped lutetium oxyorthosilicate[J]. IEEE Trans. Nucl Sci, 1993, 40(4): 380–383.
[59] DERDZYAN M V, OVANESYAN K L, PETROSYAN A G, et al. Radiation hardness of Lu AG: Ce and Lu AG: Pr scintillator crystals[J].J Cryst Growth, 2012, 361(1): 212–216.
[60] SREEBUNPENG K, CHEWPRADITKUL W, NIKL M, et al. Luminescence and scintillation properties of advanced Lu3Al5O12: Pr3+ single crystal scintillators[J]. Radiat Meas, 2014, 60(1): 42–45. 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com