首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
CuInTe2的电子结构、晶格振动及热电性质
作者:杨建会 1   1 何知宇 2 
单位:1. 乐山师范学院物理与电子工程学院 四川 乐山 614004 2. 四川大学材料科学系 成都 610064 
关键词:电子结构 晶格振动 热电性质 p  CuInTe2 
分类号:O469
出版年,卷(期):页码:2017,45(12):1758-1762
DOI:10.14062/j.issn.0454-5648
摘要:

 使用第一性原理研究了黄铜矿型 CuInTe2材料的电子结构、晶格动力学和热电输运性质。从电子结构分析可知,价

带顶由 3 条重带组成,空穴有效质量较大,表明 CuInTe2有望成为潜在的 p 型热电材料。Cu、Te 原子在价带顶有效杂化,成
为主要的电输运通道。晶格动力学研究表明可以在 Cu、In 或 Te 原子位置引入结构缺陷,增加低频区域声子散射降低晶格热
导率。不同温度、载流子浓度下的热电输运性质表明,在 900 K、载流子浓度为 4.7×1019 cm–3 时,p 型 CuInTe2的热电优值达
到 1.6,是一种极具发展潜力的高温热电材料。

 The electronic structure, lattice vibration and thermoelectric transport properties of CuInTe2 were investigated by the

first-principles calculations. It is indicated that CuInTe2 can be used as a potential p-type thermoelectric material since the valence
band maximum (VBM) is contributed by three heavy bands, which favors the promotion of the effective mass of hole. Cu and Te
atoms are effectively hybridized at VBM, which form a conducting pathway for charge carriers. Based on the analysis of lattice
dynamics, the thermal conductivity of CuInTe2 can be reduced by introducing the structural defects at Cu, In and Te sites to
increase the scatter of phonon. The carrier concentration dependence of thermoelectric transport properties of p-type CuInTe2 at
different temperatures was investigated. The results show that p-type CuInTe2 can obtain the figure of merit value of 1.6 at 900 K
and 4.7×1019 cm–3 carrier concentration, indicating that p-type CuInTe2 is a promising thermoelectric material at high temperatures.
基金项目:
四川省教育厅资助重点科研项目(17ZA0195);乐山市科技局资助重点科研项目(17GZD048);乐山师范学院前瞻性与技术创新重点项目(Z16016)资助。
作者简介:
杨建会(1980—),女,博士,副教授。
参考文献:

[1] PLIRDPRING T, KUROSAKI K, KOSUGA A, et al. Chalcopyrite CuGaTe2: A High-Efficiency Bulk Thermoelectric Material[J]. Adv Mater, 2012, 24(27): 3622–3626.

[2] SHEN J, ZHANG X, LIN S, et al. Vacancy scattering for enhancing the thermoelectric performance of CuGaTe2 solid solutions[J]. J Mater Chem A, 2016, 4: 15464–15470.
[3] GUDELLI V K, KANCHANA V, VAITHEESWARAN G. CuAlTe2: A promising bulk thermoelectric material[J]. J Alloy Compd, 2015,648: 958–965.
[4] 薛丽, 任一鸣. CuGaTe2和CuInTe2的电子和热电性质的第一性原理研究[J]. 物理学报, 2016, 65(15): 177–185.XUE Li, REN Yiming. Acta Phys Sin (in Chinese), 2016, 65(15):177–185.
[5] LI W, YANG G, ZHANG J, et al. Electronic structures and thermoelectric properties of CuMTe2 (M=Al, Ga, In) copper chalcopyrites: a first-principles study[J]. Eur Phys J B, 2015, 88(12):330.
[6] MOBARAK M, SHABAN H T. Characterization of CuInTe2 crystals[J]. Mater Chem Phys, 2014, 147(3): 439–442.
[7] ZHOU G, WANG D. High thermoelectric performance from optimization of hole-doped CuInTe2[J]. Phys Chem Chem Phys, 2016, 18: 5925–5931.
[8] KUCEK V, DRASAR C, NAVRATIL J, et al. Thermoelectric properties of Ni-doped CuInTe2[J]. J Phys Chem Solids, 2015, 83: 18–23.
[9] CHENG N, LIU R, BAI S, et al. Enhanced thermoelectric performance in Cd doped CuInTe2 compounds[J]. J Appl Phys, 2014, 115(16): 163705.
[10] MOMMA K, FUJIO I. VESTA: A three-dimensional visualization system for electronic and structural analysis[J]. J Appl Crystallogr, 2008, 41(3): 653–658.
[11] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1997, 78: 1396.
[12] KRESSE G, FURTHMULLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys Rev B Condens Matter, 1996, 54(16): 11169–11186.
[13] ZHANG Y, YUAN X, SUN X, et al. Comparative study of structural and electronic properties of Cu-based multinary semiconductors[J]. Phys Rev B, 2011, 84(7): 75127.
[14] ZHANG Y, WANG Y, XI L, et al. Electronic structure of antifluorite Cu2X (X = S, Se, Te) within the modified Becke-Johnson potential plus an on-site Coulomb U[J]. J Chem Phys, 2014, 140(7): 74702.
[15] KRUKAU A V, VYDROV O A, IZMAYLOV A F, et al. Influence of the exchange screening parameter on the performance of screened hybrid functionals[J]. J Chem Phys, 2006, 125(22): 224106.
[16] TOGO A, TANAKA I. First principles phonon calculations in materials science[J]. Scripta Mater, 2015, 108: 1–5.
[17] MADSEN G K H, SINGH D J. BoltzTraP. A code for calculating band-structure dependent quantities[J]. Comput Phys Commun, 2006, 175(1): 67–71.
[18] TERMSAITHONG P, TUBTIMTAE A. Boron-doped CuInTe2 semiconductor-sensitized liquid-junction solar cells[J]. Mater Lett, 2015, 138: 41–44.
[19] GHOSH A, THANGAVEL R, RAJAGOPALAN M. Electronic and optical modeling of solar cell compound CuXY2 (X=In, Ga, Al; Y=S, Se, Te): first-principles study via Tran-Blaha-modified Becke-Johnson exchange potential approach[J]. J Mater Sci, 2015, 50(4): 1710–1717.
[20] YANG J, CHEN S, DU Z, et al. Lattice defects and thermoelectric properties: the case of p-type CuInTe2 chalcopyrite on introduction ofzinc[J]. Dalton Trans, 2014, 43: 15228–15236.
[21] CHEN H, YANG C, LIU H, et al. Thermoelectric properties of CuInTe2/graphene composites[J]. Cryst Eng Comm, 2013, 15: 6648–6651.
[22] KOSUGA A, PLIRDPRING T, HIGASHINE R, et al. High-temperature thermoelectric properties of Cu1–xInTe2 with a chalcopyrite structure[J]. Appl Phys Lett, 2012, 100(4): 42108.
[23] LIU R, XI L, LIU H, et al. Ternary compound CuInTe2: a promising thermoelectric material with diamond-like structure[J]. Chem Commun, 2012, 48(32): 3818–3820.
[24] SUN J, SINGH D J. Thermoelectric properties of n-type SrTiO3[J]. APL Mater, 2016, 4(10): 104803.
[25] SUN J, SINGH D J. Thermoelectric Properties of Mg2(Ge,Sn): Model and Optimization of ZT[J]. Phys Rev Appl, 2016, 5: 24006.
[26] LI Y, MENG Q, DENG Y, et al. High thermoelectric performance of solid solutions CuGa1−xInxTe2 (x = 0–1.0)[J]. Appl Phys Lett, 2012, 100(23): 231903. 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com