[1] GUO W, FENG Q Q, TAO Y F, et al. Systematic investigation on the gassensing performance of TiO2, nanoplate sensors for enhanced detection on toxic gases[J]. Mater Res Bull, 2016, 73: 302–307.
[2] GUO W, MEI L, WEN J F, et al. High-esponse H2S sensor based on ZnO/SnO2 heterogeneous nanospheres[J]. Rsc Adv, 2016, 18: 15048–15053.
[3] KHALEED A A, BELLO A, DANGBEGNON J K, et al. Effect of activated carbon on the enhancement of CO sensing performance of NiO[J]. J Alloy Compd, 2017, 694: 155–162.
[4] FAN H, XU S C, CAO X M, et al. Ultra-long Zn2SnO4–ZnO microwires based gas sensor for hydrogen detection[J]. Appl Surf Sci, 2017, 400: 440–445.
[5] 何背刚, 刘涛, 管晋钊,等. SrO.9Y0.1CoO3–δ 致密扩散障碍层极限电流型氧传感器的制备及性能[J]. 硅酸盐学报, 2014, 42(3): 268–274. HE Beigang, LIU Tao, GUAN Jinzhao, et al. J Chin Ceram Soc, 2014, 42(3): 268–274.
[6] INABA T, SAJI K. Low temperature operation of thin-film limiting-current type oxygen sensor using graded-composition layer electrodes[J]. Sens Actuat B Chem, 2008, 129(2): 874–880.
[7] HAN J X, ZHOU F, BAO J X, et al. A high performance limiting current oxygen sensor with Ce0.8Sm0.2O1.9, electrolyte and La0.8Sr0.2Co0.8Fe0.2O3, diffusion barrier[J]. Electrochim Acta, 2013, 108: 763–768.
[8] 简家文, 李晓丽, 汪益. 致密扩散障型氧传感器扩散机理的研 究[J]. 电子元件与材料, 2009, 28(9): 8–11. JIAN Jiawen, LI Xiaoli, WANG Yi, et al. J Electron Componm (in Chinese), 2009, 28(9): 8–11.
[9] LEE J H, KIM H, KIM B K. Oxygen sensing characteristics of limiting current-type sensors with microstructural and structural variations in diffusion barrier[J]. Mater Lett, 1996, 26(1–2): 27–33.
[10] PENG Z, LIU M, BALKO E. A new type of amperometric oxygen sensor based on a mixed-conducting composite membrane[J]. Sens Actuat B Chem, 2001, 72(1): 35–40.
[11] SHI X, ZHANG Y. Study of YSZ amperometric oxygen sensor with a dense barrier Layer[J]. Key Eng Mater, 2005, 280–283: 431–434.
[12] PENG Z Y, LIU M L. Preparation of dense platinum-yttria stabilized zirconia and yttria stabilized zirconia films on porous La0.9Sr0.1MnO3 (LSM) substrates[J]. J Am Ceram Soc, 2001, 84(2): 283–288.
[13] 孟祥伟. 中温固体氧化物燃料电池阴极和电解质材料的性能研究[D]. 长春: 吉林大学, 2016. MENG Xiangwei. An investigation on the performance of cathode and electrolyte materials for intermediate temperature solid oxide fuel cells(in Chinese, dissertation). Changchun: Jilin University, 2016.
[14] HE Z, YUAN H, GLASSCOCK J A, et al. Densification and grain growth during early-stage sintering of Ce0.9Gd0.1O1.95–δ in a reducing atmosphere[J]. Acta Mater, 2010, 58(11): 3860–3866.
[15] DUSASTRE V, KILNER J A. Optimisation of composite cathodes for intermediate temperature SOFC applications[J]. Solid State Ion, 1999, 126(1–2): 163–174.
[16] CHIBA R, TABATA Y, KOMATSU T, et al. Property change of a LaNi0.6Fe0.4O3 cathode in the initial current loading process and the
influence of a ceria interlayer[J]. Solid State Ion, 2008, 178(31–32): 1701–1709.
[17] CHIBA R, ORUI H, KOMATSU T, et al. LaNi0.6Fe0.4O3–ceria composite cathode for SOFCs operating at intermediate temperatures[J]. J Electrochem Soc, 2008, 155(6): B575–B580.
[18] KOMATSU T, ARAI H, CHIBA R, et al. Cr poisoning suppression in solid oxide fuel cells using LaNi(Fe)O3 electrodes[J]. Electrochem solid-state lett, 2006, 9(1): A9–A12.
[19] CHIBA R, YOSHIMURA F, SSKURAI Y. An investigation of LaNi1−xFexO3, as a cathode material for solid oxide fuel cells[J]. Solid State Ion, 1999, 124(3–4): 281–288.
[20] MORISHIMA Y, NIWA E, HASHIMOTO T. Analysis of thermal stability of LaNi1−xFexO3−δ, (x = 0.0, 0.2, 0.4) by thermogravimetry and high-temperature X-ray diffraction under controlled oxygen partial pressures[J]. J Therm Anal Calorimetry, 2016, 123(3):1769–1775.
|