首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
基于 LaNi0.6Fe0.4O3–δ致密扩散障型极限电流氧传感器的制备及性能
作者:    郜建全 包金小 宋希文 
单位:内蒙古科技大学材料与冶金学院 内蒙古 包头 014010 
关键词:氧传感器 极限电流 掺铁镍酸镧 致密扩散障 
分类号:TP212
出版年,卷(期):页码:2017,45(12):1776-1781
DOI:10.14062/j.issn.0454-5648
摘要:

采用溶胶–凝胶法制备 LaNi0.6Fe0.4O3–δ(LNF)和 Ce0.9Gd0.1O1.95(GDC)粉体,用 X 射线衍射仪对 LNF 粉体进行表征,利用扫描电子显微镜对 LNF 和 GDC 陶瓷片的断面形貌进行分析。以 LNF 为致密扩散障、GDC 为固体电解质,用 Pt 浆黏合法制备致密扩散障型极限电流氧传感器,研究了氧含量和温度对氧传感器氧敏性能的影响。结果表明:LNF 形成钙钛矿结构,LNF 和 GDC 陶瓷片都烧结致密,无明显气孔;氧传感器在 740~820℃温度范围内低氧含量(0.3%~1.1%)中显示出良好的极限电流平台;氧传感器响应时间和恢复时间较短,分别约为 18 和 23 s,并且极限电流值与氧浓度 φ(O2)和温度(T–0.5)之间存在较好的线性关系。

The powders of LaNi0.6Fe0.4O3–δ (LNF) and Ce0.9Gd0.1O1.95 (GDC) were prepared via a sol–gel method. LNF powder was characterized by X-ray diffraction (XRD). The morphology of the piece sections of LNF and GDC ceramics was determined by scanning electron microscopy. A limiting current oxygen sensor using GDC as a solid electrolyte layer and LNF mixed ion-electron conductor as a dense diffusion barrier was developed via a Pt liquid agglutination method. The influences of temperature and oxygen content on the oxygen sensitive characteristic for oxygen sensor were investigated. Based on the XRD result, LNF powder has a single perovskite structure. LNF and GDC ceramic both have a greater sintered density and a lower porosity. The sensor has a good stable current plateaus at 740–820℃ as the oxygen concentration increases from 0.3% to 1.1%. Besides, the response/recovery time of oxygen sensor are 18 and 23 s, respectively, showing the good response characteristics. Also, the limiting current is linearly related to the oxygen concentration and the temperature (T–0.5).

基金项目:
内蒙古自治区高等学校科学研究项目(NJZY14168);国家自然科学基金(51464038)。
作者简介:
梁 斌(1991—),男,硕士研究生
参考文献:

[1] GUO W, FENG Q Q, TAO Y F, et al. Systematic investigation on the gassensing performance of TiO2, nanoplate sensors for enhanced detection on toxic gases[J]. Mater Res Bull, 2016, 73: 302–307.

[2] GUO W, MEI L, WEN J F, et al. High-esponse H2S sensor based on ZnO/SnO2 heterogeneous nanospheres[J]. Rsc Adv, 2016, 18: 15048–15053.
[3] KHALEED A A, BELLO A, DANGBEGNON J K, et al. Effect of activated carbon on the enhancement of CO sensing performance of NiO[J]. J Alloy Compd, 2017, 694: 155–162.
[4] FAN H, XU S C, CAO X M, et al. Ultra-long Zn2SnO4–ZnO microwires based gas sensor for hydrogen detection[J]. Appl Surf Sci, 2017, 400: 440–445.
[5] 何背刚, 刘涛, 管晋钊,等. SrO.9Y0.1CoO3–δ 致密扩散障碍层极限电流型氧传感器的制备及性能[J]. 硅酸盐学报, 2014, 42(3): 268–274. HE Beigang, LIU Tao, GUAN Jinzhao, et al. J Chin Ceram Soc, 2014,  42(3): 268–274.
[6] INABA T, SAJI K. Low temperature operation of thin-film limiting-current type oxygen sensor using graded-composition layer electrodes[J]. Sens Actuat B Chem, 2008, 129(2): 874–880.
[7] HAN J X, ZHOU F, BAO J X, et al. A high performance limiting current oxygen sensor with Ce0.8Sm0.2O1.9, electrolyte and La0.8Sr0.2Co0.8Fe0.2O3, diffusion barrier[J]. Electrochim Acta, 2013, 108: 763–768.
[8] 简家文, 李晓丽, 汪益. 致密扩散障型氧传感器扩散机理的研 究[J]. 电子元件与材料, 2009, 28(9): 8–11. JIAN Jiawen, LI Xiaoli, WANG Yi, et al. J Electron Componm (in Chinese), 2009, 28(9): 8–11.
[9] LEE J H, KIM H, KIM B K. Oxygen sensing characteristics of limiting current-type sensors with microstructural and structural variations in diffusion barrier[J]. Mater Lett, 1996, 26(1–2): 27–33.
[10] PENG Z, LIU M, BALKO E. A new type of amperometric oxygen sensor based on a mixed-conducting composite membrane[J]. Sens Actuat B Chem, 2001, 72(1): 35–40.
[11] SHI X, ZHANG Y. Study of YSZ amperometric oxygen sensor with a dense barrier Layer[J]. Key Eng Mater, 2005, 280–283: 431–434.
[12] PENG Z Y, LIU M L. Preparation of dense platinum-yttria stabilized zirconia and yttria stabilized zirconia films on porous La0.9Sr0.1MnO3 (LSM) substrates[J]. J Am Ceram Soc, 2001, 84(2): 283–288.
[13] 孟祥伟. 中温固体氧化物燃料电池阴极和电解质材料的性能研究[D]. 长春: 吉林大学, 2016. MENG Xiangwei. An investigation on the performance of cathode and electrolyte materials for intermediate temperature solid oxide fuel cells(in Chinese, dissertation). Changchun: Jilin University, 2016.
[14] HE Z, YUAN H, GLASSCOCK J A, et al. Densification and grain growth during early-stage sintering of Ce0.9Gd0.1O1.95–δ in a reducing atmosphere[J]. Acta Mater, 2010, 58(11): 3860–3866.
[15] DUSASTRE V, KILNER J A. Optimisation of composite cathodes for intermediate temperature SOFC applications[J]. Solid State Ion, 1999, 126(1–2): 163–174.
[16] CHIBA R, TABATA Y, KOMATSU T, et al. Property change of a LaNi0.6Fe0.4O3 cathode in the initial current loading process and the
influence of a ceria interlayer[J]. Solid State Ion, 2008, 178(31–32): 1701–1709.
[17] CHIBA R, ORUI H, KOMATSU T, et al. LaNi0.6Fe0.4O3–ceria composite cathode for SOFCs operating at intermediate temperatures[J]. J Electrochem Soc, 2008, 155(6): B575–B580.
[18] KOMATSU T, ARAI H, CHIBA R, et al. Cr poisoning suppression in solid oxide fuel cells using LaNi(Fe)O3 electrodes[J]. Electrochem solid-state lett, 2006, 9(1): A9–A12.
[19] CHIBA R, YOSHIMURA F, SSKURAI Y. An investigation of  LaNi1−xFexO3, as a cathode material for solid oxide fuel cells[J]. Solid State Ion, 1999, 124(3–4): 281–288.
[20] MORISHIMA Y, NIWA E, HASHIMOTO T. Analysis of thermal stability of LaNi1−xFexO3−δ, (x = 0.0, 0.2, 0.4) by thermogravimetry and high-temperature X-ray diffraction under controlled oxygen partial pressures[J]. J Therm Anal Calorimetry, 2016, 123(3):1769–1775. 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com