首页期刊信息编委及顾问期刊发行联系方式使用帮助留言板ENGLISH
位置:首页 >> 正文
粉体合成工艺对 TiB2–TiC 复相陶瓷微观组织及力学性能的影响
作者:  1 郭英奎 1 张馨予 2 赵彦伟 3 姚绵懿 2 王玉金 2 
单位:1. 哈尔滨理工大学材料科学与工程学院 哈尔滨 150040 2. 哈尔滨工业大学特种陶瓷研究所 哈尔滨 150080 3. 航天材料及工艺研究所 北京 100076 
关键词:硼化钛–碳化钛复相陶瓷 热压烧结 力学性能 增韧机制 粉末合成工艺 
分类号:TB332
出版年,卷(期):页码:2017,45(12):1788-1795
DOI:10.14062/j.issn.0454-5648
摘要:

分别以直接法和间接法碳硼热还原工艺合成的 TiB2–TiC 复合粉体为原料,采用热压烧结工艺制备了共晶成分的TiB2–44%TiC (摩尔分数)复相陶瓷,研究了粉体合成工艺和烧结温度对 TiB2–TiC 复相陶瓷显微组织和力学性能的影响。结果

表明:以直接法合成粉末为原料烧结的 TiB2–TiC 复相陶瓷中,TiB2 晶粒多呈棒状、组织细小均匀;而以间接法合成粉末为原料制备的复相陶瓷中 TiB2晶粒多呈等轴状。随着烧结温度的升高,复相陶瓷致密度提高,晶粒长大,但力学性能变化不明显。以直接法合成复合粉末为原料,在烧结温度为 2 000℃、压力为 30 MPa、保温时间为 1 h 工艺条件下制备的 TiB2–TiC 复相陶瓷综合性能最佳,其致密度、弹性模量、Vickers 硬度、抗弯强度和断裂韧性分别为 99.9%、537 GPa、19.0 GPa、598 MPa、5.3 MPa·m1/2(压痕法)和 11.6 MPa·m1/2(单边切口梁法)。TiB2–TiC 复相陶瓷主要的增韧机制为裂纹偏转和分叉。

TiB2–44%TiC (in mole fraction) composite ceramics with an eutectic composition were prepared by hot pressing sintering with TiB2–TiC composite powders synthesized by direct and indirect carbon–boron thermal reduction processes, respectively. The effects of the synthesis process and sintering temperature on the microstructure and mechanical properties of TiB2–TiC composite ceramics were investigated. The results show that TiB2 grains in TiB2–TiC composite ceramic sintered with TiB2–TiC composite powder by the direct process are rod–shaped and the microstructure is fine and uniform, while the TiB2 grains in TiB2–TiC composite ceramic sintered with TiB2–TiC composite powder by the indirect processare equiaxed. The density of the composite ceramics increases and the grains grow up, but the mechanical properties changes slightly with the increase of the sintering temperature. The TiB2–TiC composite ceramic prepared by hot pressing sintering at 2 000 ℃ and 30 MPa for 1 h with the direct synthesized composite powder has the optimum comprehensive properties (i.e., relative density of 99.9%, elastic modulus of 537 GPa, the Vickers hardness of 19.0 GPa, flexural strength of 598 MPa, and fracture toughness of 5.3 MPa?m1/2 (by indentation method) and 11.6 MPa?m1/2 (by SENB). The toughening mechanism of TiB2–TiC composite ceramics is due to crack deflection and branching.

基金项目:
国家自然科学基金(51472060)资助。
作者简介:
张 宇(1990—),男,硕士研究生
参考文献:

[1] VALLAURI D, ATIAS ADRIAN I C, Chrysanthou A. TiC–TiB2 composites: A review of phase relationships, processing and properties[J]. J Eur Ceram Soc, 2008, 28: 1697–1713.

[2] BASU B, RAJU G B, SURI A K. Processing and properties of monolithic TiB2 based materials[J]. Int Mater Rev, 2006, 51(6): 352–374.
[3] CHENG E J, KATSUI H, RONG T, et al. Long-range ordered structure of Ti–B–C–N, in a TiB2–TiCxN1–x eutectic composite[J]. J Am Ceram Soc, 2014, 97(8): 2423–2426.
[4] TEBER A, SCHOENSTEIN F, TEARD F, et al. Effect of SPS process sintering on the microstructure and mechanical properties of nanocrystalline TiC for tools application[J]. Int J Refract Met Hard Mater, 2012, 30(1): 64–70.
[5] CHENG T, LI W. The Temperature-dependent ideal tensile strength of ZrB2, HfB2, and TiB2[J]. J Am Ceram Soc, 2015, 98(1): 190–196.
[6] BHAUMIK S K, DIVAKAR C, SINGH A K, et al. Synthesis and sintering of TiB2, and TiB2–TiC composite under high pressure[J]. Mater Sci Eng A, 2000, 279(1/2): 275–281.
[7] LI W J, TU R, GOTO T. Preparation of directionally solidified TiB2–TiC eutectic composites by a floating zone method[J]. Mater Lett, 2006, 60(6): 839–843.
[8] HU L, CHEN D, MENG Q, et al. Microstructure characterization and mechanical properties of (TiC–TiB2)–Ni/TiAl/Ti functionally gradient materials prepared by FAPAS[J]. J Alloys Compd, 2015, 636: 298–303.
[9] VALLAURI D, DEORSOLA F A. Synthesis of TiC–TiB2–Ni cermets by thermal explosion under pressure[J]. Mater Res Bull, 2009, 44(7): 1528–1533.
[10] OGWU A A, DAVIES T J. The densification and mechanical properties of a TiC and TiB2 hard metal sintered with a reactive alloy binder[J]. Phys Status Solidi, 2010, 153(153): 101–116 [11] WANG H, SUN S, WANG D, et al. Characterization of the structure of TiB2/TiC composites prepared via mechanical alloying and subsequent pressureless sintering[J]. Powder Technol, 2012, 217(2): 340–346.
[12] GOTMAN I, TRAVITZKY N A, GUTMANAS E Y. Dense in situ TiB2/TiN and TiB2/TiC ceramic matrix composites: reactive synthesis and properties[J]. Mater Sci Eng A, 1998, 244(1): 127–137.
[13] BRODKIN D, KALIDINDI S R, BARSOUM M W, et al. Microstructural evolution during transient plastic phase processing of titanium carbide–titanium boride composites[J]. J Am Ceram Soc, 1996, 79(7): 1945–1952.
[14] 潘传增, 张靖, 张龙. 超重力场反应熔铸合成 TiB2 基复相陶瓷刀具 材[J]. 中国有色金属学报, 2015, 25(12): 3439–3444. PAN C Z, ZHANG J, ZHANG L. Chin J Nonferrous Met (in Chinese), 2015, 25(12): 3439–3444.
[15] 马志强, 纪引虎, 王连军. SPS 烧结制备 TiB2/TiC 复合材料[J]. 无机 材料学报, 2012, 27(9): 961–964. MA Z Q, JI Y H, WANG L J. J Inorg Mater (in Chinese), 2012, 27(9): 961–964.
[16] KANG E S, JANG C W. Effect of iron and boron carbide on the densification and mechanical properties of titanium diboride ceramics[J]. J Am Ceram Soc, 1989, 72(10): 1868–1872.
[17] SONG J, HUANG C, ZOU B, et al. Microstructure and mechanical properties of TiB2–TiC–WC composite ceramic tool materials[J]. Mater Des (1980–2015), 2012, 36(9): 69–74.
[18] SUN X, LI J, GUO S, et al. Intragranular particle residual stressstrengthening of Al2O3–SiC nanocomposites[J]. J Am Ceram Soc, 2010, 88(6): 1536–1543.
[19] 林广涌, 雷廷权, 周玉. 陶瓷材料断裂韧性的评定方法[J]. 宇航材 料工艺, 1995(4): 12–19. LIN G Y, LEI T Q, ZHOU Y. J. Aerosp Mater Technol (in Chinese), 1995(4): 12–19.
[20] YANG Y F, JIANG Q C. Reaction behaviour, microstructure and mechanical properties of TiC–TiB2/Ni composite fabricated by pressure assisted self-propagating high-temperature synthesis in air a vacuum[J]. Mater Des, 2013, 49(1635): 123–129.
[21] FU Z, KOC R. Sintering and mechanical properties of TiB2–TiC–Ni using submicron borides and carbides[J]. Mater Sci Eng A, 2016, 676: 278–288. 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com