首页期刊信息编委及顾问期刊发行联系方式使用帮助留言板ENGLISH
位置:首页 >> 正文
碳热还原法结合冰模板法制备氮化硼?碳化硼复合多孔陶瓷
作者:石存兰 薛文东 刘晓光     孙加林 
单位:北京科技大学材料科学与工程学院 北京 100083 
关键词:碳热还原法 冰模板法 氮化硼–碳化硼复合多孔陶瓷 合成机理 
分类号:TQ321
出版年,卷(期):页码:2017,45(12):1796-1802
DOI:10.14062/j.issn.0454-5648
摘要:

以六方氮化硼(h-BN)、氧化硼(B2O3)和石墨(C)为原料,去离子水为分散介质、甲基纤维素(MC)为分散剂、聚乙烯醇(PVA)为结合剂,通过冰模板法以及碳热还原过程制备了 BN–B4C 复合多孔陶瓷。结合碳热还原反应过程的热力学变化对产物进行分析。结果表明:当烧结温度为 1 350 ℃时,热力学计算得到反应体系达到平衡时的 CO 分压为 1.45×106,此时产物的 XRD 结果中出现 B4C 新相,说明在 1 350~1 550 ℃的烧结温度和氮气气氛条件下,石墨可将 B2O3 还原成 B4C,得到产物的体积密度和气孔率分别为 0.22、0.26、0.28 g·cm–3和 94.65 %、92.24 %、92.10 %。产物的微观结构由直通孔结构和部分树枝状孔结构组成,这些多孔结构为碳热还原反应产生的 CO 气体逸出提供了快速通道。

Porous BN?B4C composite ceramic was fabricated by an ice-template route and a carbothermic reduction process with h-BN、B2O3 and graphite as raw materials, deionized water as a suspension, MC as a dispersant, and PVA as a bonder. The carbothermic reduction reactions, and the characterizations of porous composite ceramics at different sintering temperatures were analyzed by X-ray diffraction, transmission electron microscopy, scanning electron microscopy and Fourier transform infrared spectroscopy, respectively. The results show that CO partial pressure is 1.45×106  when the reaction system reaches equilibrium at 1 350 ℃, and then B4C appears in the product. It is indicated that B2O3 can be reduced by graphite at 1 350–1 550 ℃ in a flowing nitrogen atmosphere. In this case, the densities and porosities of the samples are 0.22、0.26、0.28 g·cm–3 and 94.65 %、92.24 %、 92.10 %. The microstructure of the as-prepared sample is composed of aligned channel structures and several dendritic pores. The porous channels provide rapid pathways for CO gas evolution.

基金项目:
国家自然科学基金 (51602018);北京市自然科学基金(2154052)资助。
作者简介:
石存兰(1986—),女,博士研究生
参考文献:

[1] WENG Qunhong, WANG Xuebin, WANG Xi, et al. Functionalized hexagonal boron nitride nanomaterials: emerging properties and applications[J]. Chem Soc Rev, 2016, 45(14): 3989–4012.

[2] JIANG Xiangfen, WENG Qunhong, WANG Xuebin, et al. Recent progress on fabrications and applications of boron nitride nanomaterials: a review[J]. J Mater Sci Technol, 2015, 31(6): 589–598.
[3] 吴俊彦, 陈斐, 沈强, 等. 多孔陶瓷热导率的影响因素及其有效热 导率的数值计算方法[J]. 现代技术陶瓷, 2011(4): 13–16. WU Junyan, CHEN Fei, AHEN Qiang, et al. Adv Ceram (in Chinese),2011(4): 13–16.
[4] HUBÁCEK Milan, TADAO Sato. Preparation and properties of a compound in the B–C–N system[J]. J Solid State Chem, 1995, 114(1): 258–264.
[5] 李永全, 方园. 氮化硼氧化锆复合材料的热压烧结[J]. 上海金属, 2005, 27(3): 6–8.  LI Yongquan, FANG Yuan. Shanghai Metals (in Chinese), 2005, 27(3): 6–8.
[6] 曾小军, 刘维良, 冯震乾, 等. 烧结温度对 BNNTs/B4C 陶瓷复合材 料显微结构与力学性能的影响[J]. 中国陶瓷, 2014, 50(309): 27–30. ZENG Xiaojun, LIU Weiliang, FENG Zhenqian, et al. China Ceram (in Chinese), 2014, 50(309): 2730.
[7] 孙东泽, 俞泽民, 郭英奎, 等. 烧结温度对BN陶瓷材料强度的影响[J]. 哈尔滨理工大学学报, 2003, 8(3): 99–101. SUN Dongze, YU Zemin, GUO Yingkui, et al. J Harbin Univ Sci Technol (in Chinese), 2003, 8(3): 99–101.
[8] KLIMCZYK P, CURA M E, VLAICU A M, et al. Al2O3–cBN composites sintered by SPS and HPHT methods[J]. J Eur Ceram Soc, 2016, 36(7): 1783–1789.
[9] HE Xiulan, GONG Qingdong, GUO Yingkui, et al. Microstructure and properties of AlN–BN composites prepared by sparking plasma sintering method[J]. J Alloy Compd, 2016, 675: 168–173.
[10] SHENG Yuan, SÉBASTIEN Linas, JOURNET Catherine, et al. Pure & crystallized 2D boron nitride sheets synthesized via a novel process coupling both PDCs and SPS methods[J]. Sci Rep-UK, 2016, 6: 20388–20396.
[11] JIANG Tao, JIN Zhihao, YANG Jianfeng, et al. Mechanical property and R-curve behavior of the B4C/BN ceramics composites[J]. Mater Sci Eng A, 2008, 494(1–2): 203–216.
[12] JIANG Tao, JIN Zhihao, YANG Jianfeng, et al. Wear resistance of silicon infiltrated B4C/BN composites[J]. Mater Lett, 2008, 62(30): 4559–4562.
[13] JIANG Tao, JIN Zhihao, YANG Jianfeng, et al. Investigation on the preparation and machinability of the B4C/BN nanocomposites by hot-pressing process[J]. J Mater Process Tech, 2009, 209(1): 561–571.
[14] SINHA A, MAHATA T, SHARMA B P. Carbothermal route for preparation of boron carbide powder from boric acid-citric acid gel precursor[J]. J Nucl Mater, 2002, 301(2–3): 165–169.
[15] JUNG C, LEE M, KIM C. Preparation of carbon-free B4C powder from B2O3 oxide by carbothermal reduction process[J]. Mater Lett, 2004, 58(5): 609–614.
[16] ALIZADEH A, TAHERI-NASSAJ E, EHSANI N. Synthesis of boron carbide powder by a carbothermic reduction method[J]. J Eur Ceram Soc, 2004, 24(10/11): 3227–3234.
[17] SURYAVANSHI U, BALASUBRAMANIAN V V, LAKHI K S, et al. Mesoporous BN and BCN nanocages with high surface area and spherical morphology[J]. Phys Chem Chem Phys. 2014, 16(43): 23554–23557.
[18] PORTER M M, IMPERIO R, WEN M, et al. Bioinspired Scaffolds with varying pore architectures and mechanical properties[J]. Adv Funct Mater, 2014: 24(14), 1978–1987.
[19] DEVILLE Sylvain. Freeze-casting of porous ceramics: a review of current achievements and issues[J]. Adv Eng Mater, 2008, 10(3): 155–169.
[20] 石存兰, 薛文东, 刘晓光, 等. 冻干法制备多孔氮化硼陶瓷及其成 孔机理[J]. 硅酸盐学报. 2015, 43(12): 1701–1705. SHI Cunlan, XUE Wendong, LIU Xiaoguang, et al. J Chin Ceram Soc, 2015, 43(12): 1701–1705.
[21] 梁英教, 车荫昌. 无机物热力学数据手册[M].沈阳: 东北大学出版社有限公司, 1993.
[22] 伊赫桑·巴伦. Thermochemical Data of Pure Substances[M]. 北京: 科学出版社, 2003.
[23] DEVILLE Sylvain, EDUARDO Saiz, ANTONI P Tomsia. Freeze casting of hydroxyapatite scaffolds for bone tissue engineering[J]. Biomaterials, 2006, 27(32): 5480–5489. 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com