首页期刊信息编委及顾问期刊发行联系方式使用帮助留言板ENGLISH
位置:首页 >> 正文
发泡–注凝成型法制备自结合莫来石多孔陶瓷
作者:邓先功 1 2 韦婷婷 1 冉松林 3 韩磊 2 张海军 2 张少伟 2 
单位:1. 安徽工业大学材料科学与工程学院 安徽 马鞍山 243002 2. 武汉科技大学省部共建耐火材料与冶金国家重点实验室 武汉 430081 3. 安徽工业大学冶金减排与资源综合利用教育部重点实验室 安徽 马鞍山 243002 
关键词:自结合莫来石多孔陶瓷 发泡–注凝成型 反应烧结 线收缩率 
分类号:Q174
出版年,卷(期):页码:2017,45(12):1803-1809
DOI:10.14062/j.issn.0454-5648
摘要:

以莫来石粉为原料、Al2O3和 SiO2粉体为莫来石自结合相起始原料、Isobam 104 为分散剂和黏结剂、十二烷基硫酸三乙醇胺为发泡剂和羧甲基纤维素钠为稳泡剂,采用发泡–注凝成型工艺结合反应烧结法制备了自结合莫来石多孔陶瓷。研

究了自结合相粉体的用量对浆料流变性能和胶凝性能的影响,并对所制备自结合莫来石多孔陶瓷的物相组成、显微结构、线收缩率、孔隙率和机械性能进行了表征。结果表明:随着自结合相粉体用量从 0%增至 50%(质量分数)时,所制备莫来石多孔陶瓷的孔隙率、球形气孔孔径逐渐增加,而其线收缩率和机械强度逐渐降减小。当自结合相粉体的用量为 40%时,所制备的孔隙率约为 76.6%(体积分数)、球形气孔孔径约为 565 μm、线收缩率仅为 13.8%的莫来石多孔陶瓷的耐压强度和抗折强度仍分别可达 7.9 和 4.0 MPa。

Self-bonded mullite porous ceramics were prepared by foam–gelcasting combined reaction sintering method using mullite powders as main raw materials, Al2O3 and SiO2 powders as starting materials of self-bonded mullite, Isobam 104 as a dispersing/gelling agent, triethanolamine lauryl sulfate as a foaming agent, and sodium carboxymethyl cellulose as a foam stabilizing agent. The effect of self-bonded phase content on the rheological properties and gelling behaviors of the slurries was investigated. The phase composition, microstructures, linear shrinkage ratio, porosity and mechanical properties of the resultant porous samples were characterized. The results show that the porosity and the average spherical pore size of as-prepared porous ceramics increase, while their linear shrinkage ratio and mechanical strength decrease with increasing the self-bonded phase content from 0% to 50% (in mass

fraction). When the content of self-bonded phase is 40%, the compressive strength and flexural strength of as-prepared porous sample with the porosity of 76.6% (in volume fraction), average spherical pore size of 565 μm and linear shrinkage ratio of 13.8% are 7.9 MPa and 4.0 MPa, respectively.
基金项目:
国家自然科学基金面上项目(51672194 和 51472184);湖北省教育厅优秀中青年科技创新团队计划项目(T201602);安徽省大学生创新创业训练计划(201710360186)资助。
作者简介:
邓先功(1980—),男,博士,讲师
参考文献:

[1] SCHNEIDER H, SCHREUER J, HILDMANN B. Structure and properties of mullite–a review[J]. J Eur Ceram Soc, 2008, 28(2):329–344.

[2] GONG L L, WANG Y H, CHENG X D, et al. Porous mullite ceramicswith low thermal conductivity prepared by foaming and starchconsolidation[J]. J Porous Mater, 2014, 21(1): 15–21.
[3] DING S Q, ZENG Y P, JIANG D L. Fabrication of mullite ceramics with ultrahigh porosity by gel freeze drying[J]. J Am Ceram Soc, 2007,90(7): 2276–2279.
[4] CHEN G L, QI H, XING W H, et al. Direct preparation of macroporous mullite supports for membranes by in situ reaction sintering[J]. J Membr Sci, 2008, 318(1): 38–44.
[5] ZENG D J, ZHANG Y M, YANG J F, et al. Fabrication and property of mullite whiskers frameworks with an ultrahigh porosity by expandable mesocarbon microbeads[J]. J Am Ceram Soc, 2016, 99(7): 2226– 2228.
[6] LEE J H, CHOI H J, YOON S Y, et al. Porous mullite ceramics derived from coal fly ash using a freeze-gel casting/polymer sponge technique[J]. J Porous Mater, 2013, 20(1): 219–226.
[7] DENG X G, WANG J K, LIU J H, et al. Preparation and characterization of porous mullite ceramics via foam-gelcasting[J]. Ceram Int, 2015, 41(7): 9009–9017.
[8] DENG X G, WANG J K, ZHANG H J, et al. Effects of firing temperature on the microstructures and properties of porous mullite ceramics prepared by foam-gelcasting[J]. Adv Appl Ceram, 2016, 115(4): 204–209.
[9] GARCIA E, OSENDI M I, MIRANZO P. Porous mullite templated from hard mullite beads[J]. J Eur Ceram Soc, 2011, 31(8): 1397–1403.
[10] 武七德, 洪小林, 黄代勇. 反应烧结碳化硅研究进展[J]. 硅酸盐通报, 2002, 21(1): 29–33.WU Qide, HONG Xiaolin, HUANG Daiyong. Bull Chin Ceram Soc(inChinese), 2002, 21(1): 29–33.
[11] 鲁元, 杨建锋, 李京龙. 碳热还原–反应烧结法制备多孔氮化硅陶瓷[J]. 无机材料学报, 2013, 28(5): 469–473.LU Yuan, YANG Jianfeng, LI Jinglong. J Inorg Mater(in Chinese),2013, 28(5): 469–473.
[12] 段锋, 高云琴, 尹洪峰. 原位反应烧结制备莫来石–锌铝尖晶石多孔陶瓷研究[J]. 人工晶体学报, 2015, 44(8): 2303–2307.DUAG Feng, GAO Yunqin, YIN Hongfeng. J Synth Cryst(in Chinese),2015, 44(8): 2303–2307.
[13] 陈纲领, 漆虹, 彭文博, 等. 原位反应烧结制备高强度多孔莫来石支撑体[J]. 稀有金属材料与工程, 2008, 37(A01): 74–77.CHEN Gangling, QI Hong, PENG Wenbo, et al. Rare Metal MaterEng(in Chinese), 2008, 37(A01): 74–77.
[14] SHE J H, OHJI T. Fabrication and characterization of highly porous mullite ceramics[J]. Mater Chem Phy, 2003, 80(3): 610–614.
[15] WANG X, LI J H, GUAN W M, et al. Emulsion-templated high porosity mullite ceramics with sericite induced textured structures[J]. Mater Des, 2016, 89: 1041–1047.
[16] KONEGGER T, FELZMANN R, ACHLEITNER B, et al.Mullite-based cellular ceramics obtained by a combination of direct foaming and reaction bonding[J]. Ceram Int, 2015, 41(7): 8630–8636.
[17] 高月英, 顾惕人. 无定形SiO2的表面结构[J]. 石油化工, 1984, 13(3):205–207.GAO Yueying, GU Tiren. Petrochem Techno(in Chinese), 1984, 13(3):205–207.
[18] ILER R K, DALTON R L. Degree of hydration of particles of colloidal silica in aqueous solution[J]. J Phys Chem, 1956, 60(7): 955–957.
[19] WANG X, XIE Z P, HUANG Y, et al. Gelcasting of silicon carbide based on gelation of sodium alginate[J]. Ceram Int, 2002, 28(8):865–871.
[20] 李楠, 顾华志, 赵惠忠. 耐火材料学[M]. 北京: 冶金工业出版社,2010: 130–132.
[21] 马雪, 姚晓, 华苏东. 原位反应合成多孔莫来石质支撑体及其显微结构[J]. 硅酸盐学报, 2009, 37(10): 1777–1781.MA Xue, YAO Xiao, HUA Sudong. J Chin Ceram Soc, 2009, 37(10):1777–1781.
[22] 刘瑞平, 李玉涛, 汪长安, 等. 高气孔率及低热导率多孔莫来石陶瓷的制备[J]. 硅酸盐学报, 2014, 42(6): 703–708.LIU Ruiping, LI Yutao, WANG Changan, et al. J Chin Ceram Soc,2014, 42(6): 703–708.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com