首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
氧化铝添加量对多孔碳化硅支撑体性能的影响
作者:  郁苏俊   
单位:材料化学工程国家重点实验室 南京工业大学膜科学技术研究所 南京 210009 
关键词:多孔陶瓷支撑体 碳化硅 纯水通量 耐腐蚀性能 
分类号:TQ174;TQ050.4
出版年,卷(期):页码:2017,45(12):1810-1817
DOI:10.14062/j.issn.0454-5648
摘要:

以平均粒径为 27.6 μm 的 α-SiC 为骨料、亚微米碳化硅和 α-Al2O3 为助烧剂,采用干压成型法在空气氛围中烧成制备多孔碳化硅支撑体,研究了氧化铝含量对多孔碳化硅支撑体结构及性能的影响。结果表明:当氧化铝添加量为 10%(质量分

数)、烧成温度为 1 450 ℃时,支撑体的孔径、孔隙率、抗弯强度和纯水通量分别为 0.3 μm、31.8%、39.1 MPa 和 786 L·m–2·h–1·bar–1。经过 80 ℃,10%的 NaOH 溶液中腐蚀 4 h 后,多孔碳化硅支撑体的抗弯强度仍高于 18 MPa。

Macroporous silicon carbide (α-SiC) supports prepared by a dry-pressing method were sintered in air by using α-SiC powder (the average particle size of 27.6 μm) and submicron-sized silicon carbide and alumina as sintering agents. Effect of alumina doping on the structure and properties of macroporous silicon carbide support was investigated. The effect of the doping amount of alumina on the pore size, porosity, bending strength, and pure water flux of the SiC supports was also investigated. SiC support can be obtained at 1 450 when a ℃ lumina powder of 10% (in mass fraction) is added. The pore size, porosity, three-point bending strength and pure water flux of this support are 0.3 μm, 31.8%, 39.1 MPa, and 786 L·m–2·h–1·bar–1, respectively. The three-point bending strength of the support is 18 MPa after corroded in 10% NaOH (80℃) for 4 h

基金项目:
国家自然科学基金(21276123,21490581);江苏省“六大人才高峰”项目资助。
作者简介:
于 吉(1992—),女,硕士研究生
参考文献:

[1] HOFS B, OGIER J, VRIES D. Comparison of ceramic and polymeric membrane permeability and fouling using surface water[J]. Sep Purif Technol, 2011, 79(3): 365–374.

[2] SKIBINSKI B, M LLER P, UHL W. Rejection of submicron sized particles from swimming pool water by a monolithic SiC microfiltration membrane: Relevance of steric and electrostatic interactions[J]. J Membr Sci, 2015, 499(1): 92–104.
[3] YEOM H-J, KIM S C, KIM Y-W, et al. Processing of alumina-coated clay–diatomite composite membranes for oily wastewater treatment[J]. Ceram Int, 2016, 42(4): 5024–5035.
[4] HE C, VIDIC R D. Application of microfiltration for the treatment of Marcellus Shale flowback water: Influence of floc breakage on membrane fouling[J]. J Membr Sci, 2016, 510(15): 348–354.
[5] CHERYAN M, RAJAGOPALAN N. Membrane processing of oily streams. Wastewater treatment and waste reduction[J]. J Membr Sci, 1998, 151(1): 13–28.
[6] BOTTINO A, CAPANNELLI C, DEL BORGHI A, et al. Water treatment for drinking purpose: ceramic microfiltration application[J].Desalination, 2001, 141(1): 75–79.
[7] 徐南平. 无机膜分离技术与应用[M]. 化学工业出版社, 2003.
[8] DAS B, CHAKRABARTY B, BARKAKATI P. Preparation and characterization of novel ceramic membranes for micro-filtration applications[J]. Ceram Int, 2016, 42(13): 14326–14333.
[9] ABADI S R H, SEBZARI M R, HEMATI M, et al. Ceramic membrane performance in microfiltration of oily wastewater[J]. Desalination, 2011, 265(1–3): 222–228.
[10] HUISMAN I H, TR G RDH G, TR G RDH C, et al. Determining the zeta-potential of ceramic microfiltration membranes using the electroviscous effect[J]. J Membr Sci, 1998, 147(2): 187–194.
[11] 白成英, 苏魁范, 邓湘云, 等. 氧化结合法制备多孔碳化硅陶瓷及其特性[J]. 硅酸盐通报, 2013, 32(9): 1699–1703.BAI Chengying, SU Kuifan, et al. Bull Chin Ceram Soc (in Chinese),2013, 32(9): 1699–1703.
[12] ZSIRAI T, AL-JAML A K, QIBLAWEY H, et al. Ceramic membrane filtration of produced water: Impact of membrane module[J]. Sep Purif Technol, 2016, 165(13): 214–221.
[13] BARO A G N B, CHA B J, JUNG B. Negatively charged poly(vinylidene fluoride) microfiltration membranes by sulfonation[J]. J Membr Sci, 2007, 290(1–2): 46–54.
[14] WIT P D, KAPPERT E J, LOHAUS T, et al. Highly permeable and mechanically robust silicon carbide hollow fiber membranes[J]. J Membr Sci, 2015, 475(1): 480–487.
[15] HACK V, STOBBE P. Porous ceramic body and method for production thereof[P]. US Patent 7699903. 2010-4-20.
[16] FRAGA M C, SANCHES S, PEREIRA V J, et al. Morphological, chemical surface and filtration characterization of a new silicon carbide membrane[J]. J Eur Ceram Soc, 2017, 37(3): 899–905.
[17] BAI C Y, LI Y, LIU Z M, et al. Fabrication and properties of mullite-bonded porous SiC membrane supports using bauxite as aluminum source[J]. Ceram Int, 2015, 41(3): 4391–4400. [18] JING Y N, DENG X Y, LI J B. Fabrication and Properties of SiC/mullite composite porous ceramics[J]. Ceram Int, 2014, 40(1): 1329–1334.
[19] KVMAR B V M, EOM J H, KIM Y W. Effect of aluminum source on flexural strength of mullite-bonded porous silicon carbide ceramics[J]. J Ceram Soc Jpn, 2010, 118(1373): 13–18.
[20] JING Y N, DENG X Y, LI J B. Fabrication and properties of SiC/mullite composite porous ceramics[J]. Ceram Int, 40(1): 1329–1334.
[21] 段力群, 马青松. 碳化硅多孔陶瓷制备技术的研究进展[J]. 材料导报, 2010, 24(S2): 201–204.DUAN Liqun, MA Qingsong. Mater Rev (in Chinese), 2010, 24(S2):201–204.
[22] 刘振英, 徐彬, 樊恒茂. 优质硅莫砖的制备及其性能[J]. 材料科学与工程学报, 2014, 32(1): 85–88.LIU Zhenying, XU Bing, Fan Hengmao. J Mater Sci Eng (in Chinese),2014, 32(1): 85–88.
[23] 刘龙, 李友胜, 李楠. 不同种类莫来石对碳化硅质浇注料性能的影响[J]. 硅酸盐通报, 2013, 32(4): 640–645.LIU Long, LI Yousheng, LI Nan. Bull Chin Ceram Soc(in Chinese),2013, 32(4): 640–645.
[24] 罗旭东, 曲殿利, 谢志鹏, 等. 碳化硅对莫来石质浇注料耐碱性能的影响[J]. 人工晶体学报, 2015, 44(12): 3759–3764.LUO Xudong, DIAN Dianli, XIE Zhipeng, et al. J Synth Cryst (inChinese), 2015, 44(12): 3759–3764.
[25] SHE J H, OHJI T. Porous mullite ceramics with high strength[J]. J Mater Sci Lett, 2002, 21(23): 1833–1834.
[26] LIU Y F, LIU X Q, WEI H, et al. Porous mullite ceramics from national clay produced by gelcasting[J]. Ceram Int, 2001, 27(1): 1–7.
[27] WU S, CHAN H M, HARMER M P. Reaction-forming of mullite ceramics using an aqueous milling medium[J]. J Am Ceram Soc, 2010,80(6): 1579–1582.
[28] EOM J H, KIM Y W, WOO S K. Effect of submicron silicon carbide powder addition on the processing and strength of reaction-sintered mullite-silicon carbide composites[J]. J Ceram Soc Jpn, 2009, 117(4): 421–425.
[29] RICE R W. Grain size and porosity dependence of ceramic fractureenergy and toughness at 22 °C[J]. J Mater Sci, 1996, 31(8): 1969–1983.
[30] LAITINEN N, LUONSI A, LEV NEN E, et al. Effect of backflushing conditions on ultrafiltration of board industry wastewaters with ceramic membranes[J]. Sep Purif Technol, 2001,25(1–3): 323–331.
[31] 曾令可, 王慧, 罗民华. 多孔功能陶瓷制备与应用[M]. 化学工业出版社, 2006.
[32] BAI C Y, DENG X Y, LI J B, et al. Preparation and properties ofmullite-bonded porous SiC ceramics using porous alumina as oxide[J].Mater Charact, 2014, 90(4): 81–87.
[33] DING S, ZENG P Y, JIANG D. In-situ reaction bonding of porous SiCceramics[J]. Mater Charact, 2008, 59(2): 140–143.
[34] SHE J H, DENG Z Y, DANIEL-DONI J. Oxidation bonding of poroussilicon carbide ceramics[J]. J Mater Sci, 2002, 37(17): 3615–3622.
[35] DING S Q, ZHU S M, ZENG Y P. Fabrication of mullite-bondedporous silicon carbide ceramics by in situ reaction bonding[J]. J EurCeram Soc, 2007, 27(4): 2095–2102.
[36] FACCIOTTI M, BOFFA V, MAGNACCA G. Deposition of thin ultrafiltration membranes on commercial SiC microfiltration tubes[J]. Ceram Int, 2014, 40(2): 3277–3285.
[37] QI H, NIU S, JIANG X, et al. Enhanced performance of a macroporous ceramic support for nanofiltration by using α-Al2O3 with narrow size distribution[J]. Ceram Int, 2013, 39(3): 2463–2471.
[38] 岳兴媛, 陈宇红, 詹小友, 等. 原位反应制备 SiC 多孔陶瓷材料[J].中国陶瓷, 2013, (11): 51–54.YUE Xingyuan, CHEN Yuhong, ZHAN Xiaoyou, et al. Chin Ceram(in Chinese), 2013, (11): 51–54.
[39] 李美葶, 罗旭东, 张国栋, 等. Al2O3–SiC 耐火浇注料耐碱机理研究[J]. 稀有金属材料与工程, 2015, 44(S1): 454–458.LI Meiting, LUO Xudong, ZHANG Guodong, et al. Rare Met Mat Eng(in Chinese), 2015, 44(S1): 454–458. 
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com