首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
氧化铝激光选区熔化温度场模拟
作者:  刘婷婷 廖文和 张长东 杜道中   
单位:南京理工大学机械工程学院 江苏省高端制造装备与技术工程实验室 南京 210094 
关键词:激光选区熔化、增材制造、陶瓷、氧化铝、数值模拟 
分类号:TN249
出版年,卷(期):页码:2017,45(12):1825-1832
DOI:10.14062/j.issn.0454-5648
摘要:

基于ANSYS 模拟分析了激光选区熔化(Selective Laser Melting,SLM) Al2O3 陶瓷过程中的温度场,研究了激光功率和扫描速率对熔池热行为的影响,并结合实验验证了模型的可靠性。结果表明:当激光功率由100 W 增加到200 W 时,熔池的最高温从1 619.02 K 增加到3 276.79 K,升温速率极值从2.05×106 K/s 增加到4.90×106 K/s;当扫描速率由60 mm/s 增加到120 mm/s 时,熔池的最高温由2 754.45 K 减少到1 980.59 K,而升温速率极值由2.65×106 K/s 增加到3.57×106 K/s,降温速率极值由2.15×106 K/s 增加到2.63×106 K/s;当扫描速率固定为90 mm/s 时,熔池的最高温度是影响降温速率值的直接因素,熔池最高温度越高(激光功率越大),降温速率越大。随着激光功率的增加或者扫描速率的减少,熔池的尺寸逐渐增大。对比实验与模拟数据,发现模拟结果能够说明试样的表面质量和粉末的熔化状态随激光工艺参数而变化的趋势。

The influences of laser power and scanning speed on the temperature field during the selective laser melting process of alumina ceramic was analyzed based on the ANSYS. The reliability of the physical model was also verified by the related experiments. The simulation results show that the maximum temperature of the molten pool increases from 1 619.02 to 3 276.79 K and the heating rate increases from 2.05×106 to 4.90×106 K/s when the laser power is increased from 100 to 200 W. The maximum temperature of the molten pool decreases from 2 754.45 to 1 980.59 K, while the heating rate increases from 2.65×106 to 3.57×106 K/s and the cooling rate increases from 2.15×106 to 2.63×106 K/s as the scanning speed elevates from 60 to 120 mm/s. When the scanning speed is fixed at 90 mm/s, the maximum temperature of the molten pool is a direct factor affecting the cooling rate. The higher maximum temperature (or the greater laser power) is, the greater cooling rate will be. The size of the melt pool gradually increases when the laser power increases or the scanning speed decreases. It is shown that the numerical simulation approach can effectively predict the influence of laser parameters on the surface quality of the parts and the melting state of alumina powder.

基金项目:
国家自然科学基金(51375242) ; 江苏省重点研发计划(BE2015165)资助。
作者简介:
张 凯(1989—),男,博士研究生
参考文献:

[1] 金志浩, 李光新, 高积强, 等. ZrO2 增韧Al2O3 陶瓷耐磨性的研究[J].硅酸盐学报, 1989, 17(5): 401–405.JIN Zhihao, LI Guangxin, GAO Jiqiang, et al. J Chin Ceram Soc, 1989,17(5): 401–405.

[2] 利翔, 王宏建, 郭伟明, 等. 氧化锆增韧氧化铝基陶瓷刀具的制备及其切削性能[J]. 硅酸盐学报, 2016, 44(9): 1347–1351.WU Lixiang, WANG Hongjian, GUO Weiming, et al. J Chin CeramSoc, 2016, 44(9): 1347–1351.
[3] MEINERS W. Direktes Selektives Laser Sintern einkomponentigermetallischer Werkstoffe (in German, dissertation). Aachen:Rheinisch-Westfaelische Technische Hochschule Aachen University,1999.
[4] MEINERS W, WISSENBACH K, GASSER A. Selective laser sinteringat melting temperature [P]. US Patent, 6215093. 2001–10–04.
[5] SHISHKOVSKY I, YADROITSEV I, BERTRAND P, et al.Alumina–zirconium ceramics synthesis by selective laser sintering/melting[J]. Appl Surf Sci, 2007, 254(4): 966–970.
[6] BERTRAND P, BAYLE F, COMBE C, et al. Ceramic componentsmanufacturing by selective laser sintering[J]. Appl Surf Sci, 2007,254(4): 989–992.
[7] WILKES J. Selektives Laserschmelzen zur generativen Herstellung von Bauteilen aus hochfester Oxidkeramik (in German, dissertation). Aachen: Rheinisch-Westfaelische Technische Hochschule Aachen University, 2009.
[8] WILKES J, HAGEDORN Y C, MEINERS W, et al. Additive manufacturing of ZrO2–Al2O3 ceramic components by selective laser melting[J]. Rapid Prototyp J, 2013, 19(1): 51–57.
[9] GUSAROV A V, SMUROV I. Modeling the interaction of laser radiation with powder bed at selective laser melting[J]. Phys Proced, 2010, 5(Part B): 381–394.
[10] LI Y, GU D D. Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder[J]. Mater Des, 2014, 63(2): 856–867.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com