首页期刊信息编委及顾问期刊发行联系方式使用帮助留言板ENGLISH
位置:首页 >> 正文
葡萄糖水热碳化催化热处理制备石墨微球
作者:李赛赛 王军凯 王慧芳   张海军 
单位:武汉科技大学 省部共建耐火材料与冶金国家重点实验室 武汉 430081 
关键词:水热碳化法 葡萄糖 催化剂 石墨微球 溶解–析出 
分类号:TB35
出版年,卷(期):页码:2017,45(12):1843-1852
DOI:10.14062/j.issn.0454-5648
摘要:

以葡萄糖为碳源、聚丙烯酸钠为分散剂、硝酸镍为催化剂的前驱体,采用水热碳化法一步制备了负载有NiO 催化剂的碳微球,再在氩气气氛下催化热处理制备了平均粒径约2 μm 的石墨化程度高、球形度及分散性好的石墨微球。研究了催化剂用量、热处理温度以及保温时间对合成石墨微球的影响。结果表明:当催化剂Ni 的加入量为1.5% (质量分数)、热处理温度为1 200 ℃、保温时间为3 h 时,所得石墨微球的石墨化程度最高。继续升高热处理温度或延长保温时间,石墨微球的石墨化程度反而降低,其原因可能是过高的温度或者过长的保温时间导致了催化剂的团聚及失活。碳微球的催化石墨化过程由溶解–析出机理决定。此外,石墨微球具有与鳞片石墨几乎相当的抗氧化性能,且远高于碳微球。

Graphitic carbon spheres with an average size of 2 μm, good sphericity, narrow size distribution and high graphitization degree were synthesized via a hydrothermal carbonization and catalytic graphitization process in Ar atmosphere using glucose as a carbon source, sodium polyacrylate (PAANa) as a dispersant and nickel nitrate (Ni(NO3)2·6H2O) as a catalyst precursor. The effects of catalyst amount, firing temperature and soaking time on the preparation of graphitic carbon spheres were investigated. The results show that the graphitic carbon spheres can be obtained under the optimal experimental conditions (i.e., holding time of 3 h, sintering temperature of 1 200 ℃ and 1.5%Ni). The graphitization degree of as-prepared graphitic carbon spheres decreases with increasing the heat-treatment temperature or the soaking time, which might result from the aggregration and deactivation of Ni nanoparticle catalysts. In addition, dissolution-precipitation mechanism for the formation of graphitic carbon spheres was also discussed. In addition, graphite carbon spheres have almost identical oxidation resistance compared with flake graphite, and much higher oxidation resistance than carbon spheres.

基金项目:
国家自然科学基金面上项目(51272188, 51472184, 51472185)资助。
作者简介:
李赛赛(1990—),女,博士研究生
参考文献:

[1] 廖宁, 李亚伟, 桑绍柏. 高温下铝碳耐火材料中多壁碳纳米管的结构演变[J]. 硅酸盐学报, 2015, 43(3): 251–260.LIAO Ning, LI Yawei, SONG Shaobai. J Chin Ceram Soc, 2015,43(3): 251–260.

[2] 程峰, 王军凯, 谭操. 以Fe2O3为催化剂制备氧化镁晶须[J]. 硅酸盐学报, 2017, 45(3): 459–466.CHENG Feng, WANG Junkai, TAN Cao, et al. J Chin Ceram Soc,2017, 45(3): 459 –466.
[3] 王军凯, 张海军, 梁峰. 孔结构对热解酚醛树脂制备碳纳米管的影响[J]. 硅酸盐学报, 2017, 45(3): 416–421.WANG Junkai, ZHANG Haijun, LIANG Feng, et al. J Chin Ceram Soc,2017, 45(3): 416–421.
[4] JIAN X, WANG D, LIU H, et al. Controllable synthesis of carbon coils and growth mechanism for twinning double-helix catalyzed by Ni nanoparticle[J]. Compos Part B, 2014, 61(5): 350–357.
[5] FAN H, LI Y, SANG S. Microstructures and mechanical properties of Al2O3–C refractories with silicon additive using different carbon sources[J]. Mater Sci Eng A, 2011, 528(7–8): 3177–3185.
[6] 靳权, 刘应亮, 武拥建. 低温催化法制备石墨化碳空心球[J]. 化学进展, 2012, 24(1): 39–46.JIN Qian, LIU Yingliang, WU Yongjian, et al. Prog Chem (in Chinese),2012, 24(1): 39–46.
[7] DEY S, GOVINDARAJ A, BISWAS K, et al. Luminescence properties of boron and nitrogen doped graphene quantum dots prepared from arc-discharge-generated doped graphene samples[J]. Chem Phys Lett,2014(1), 595–596(3): 203–208.
[8] WU C, CHEN S, SHEN P. Polyynes and flexible Si–H doped carbon nanoribbons by pulsed laser ablation of graphite in tetraethyl orthosilicate[J]. Carbon, 2014, 67(67): 27–37.
[9] HUANG L, CHANG Q, GUO G, et al. Synthesis of high-quality graphene films on nickel foils by rapid thermal chemical vapor deposition[J]. Carbon, 2012, 50(2): 551–556.
[10] JAIN A, BALASUBRAMANIAN R, SRINIVASAN M. Hydrothermal conversion of biomass waste to activated carbon with high porosity: A review[J]. Chem Eng J, 2016, 283: 789–805.
[11] WANG J, DENG X, ZHANG H, et al. Synthesis of carbon nanotubes via Fe-catalyzed pyrolysis of phenolic resin[J]. Phys E, 2017, 86: 24–35.
[12] 黄珍霞, 梁峰, 王军凯. 钴纳米颗粒催化酚醛树脂制备碳纳米管[J].硅酸盐学报, 2016, 44(9): 1380–1386.HUANG Zhenxia, LIANG Feng, WANG Junkai, et al. J Chin CeramSoc, 2016, 44(9): 1380–1386.
[13] YANG H, WANG G, DING N, et al. Size-controllable synthesis of carbon spheres with assistance of metal ions[J]. Synth Met, 2016, 214:1–4.
[14] LIU S, WANG X, ZHAO H, et al. Micro/nano-scaled carbon spheres based on hydrothermal carbonization of agarose[J]. Colloids Surf A,2015, 484(21): 386–393.
[15] 张风英. 碳材料催化石墨化研究[D]. 长沙: 湖南大学, 2009. ZHANG Fengying. Study on Catalytic Graphitization of carbon materials (in Chinese, dissertation). Chang sha: Hunan University, 2009.
[16] SEVILLA M, FUERTES AB. Graphitic carbon nanostructures from cellulose[J]. Chem Phys Lett, 2010, 490(1/3): 63–68.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com