首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
悬浮法制备新型功能玻璃
作者:邱建荣1  诚2 刘小峰2 
单位:1. 浙江大学光电科学与工程学院 杭州 310027 2. 浙江大学材料科学与工程学院 杭州 310027 
关键词:悬浮熔炼 无容器过程 新型功能玻璃 
分类号:TM242
出版年,卷(期):页码:2018,46(1):11-20
DOI:
摘要:

玻璃通常通过高温熔体迅速冷却得到,熔体与容器的接触易导致非均匀成核发生,常导致玻璃形成能力较弱的组分产生析晶。悬浮法可提供超高熔制温度、超快冷却速度,可以用于制备高熔点以及玻璃形成能力较弱的体系。介绍了若干最常见的悬浮熔炼法,总结了此技术在几种功能玻璃体系(Al2O3基、Nb2O5基、TiO2基和WO3基)制备中的应用,并对该技术的发展做出了展望。该技术有助于研究人员对玻璃结构组成形成新的理解,为新型功能玻璃设计提供新思路。

Glass is commonly fabricated by rapid cooling of high-temperature melt. However, heterogeneous nucleation easily occurs at the interface between the melt and container, which could lead to devitrification for compositions with weak glass-forming ability. Containerless processing (also called levitation) offers a super high melting temperature and enables super undercooling; it therefore provide a solution for the fabrication of glasses with high melting point or low glass-forming ability. This article briefly reviews several containerless methods and their applications in the fabrication of several novel functional glasses (including Al2O3-based, Nb2O5-based, TiO2-based and WO3-based), and highlights future perspectives of these techniques. This technology may facilitate the establishment of new understandings on glass structure and construction which will help the researchers to design novel functional glass.

基金项目:
作者简介:
邱建荣(1962—),男,博士,教授。
参考文献:
[1] VOGEL W. Chemistry of Glass[M]. American Ceramic Society, 1985.
[2] ANGELL C A. Formation of glasses from liquids and biopolymers[J]. Science, 1995, 267(5206): 1924–1935.
[3] LOWER N P, MCRAE J L, FELLER H A, et al. Physical properties of alkaline-earth and alkali borate glasses prepared over an extended range of compositions[J]. J Non-Cryst Solids, 2001, S293/295(1): 669–675.
[4] FUNAKOSHI N, KANAMORI T, MANABE T. Liquid quenching of PD82-XAGXSI18 alloys[J]. Jpn J Appl Phys, 1977, 16(1): 1–4.
[5] MCMILLAN P, PIRIOU B. The structures and vibrational-spectra of crystals and glasses in the silica-alumina system[J]. J Non-Cryst Solids, 1982, 53(3): 279–298.
[6] WEBER J K R. The Containerless synthesis of glass[J]. Int J Appl Glass Sci, 2010, 1(3): 248–256.
[7] WEBER J K R, TANGEMAN J A, SIEWENIE J, et al. Structure of binary CaO-Al2O3 and SrO-Al2O3 liquids by combined levitation-neutron diffraction[J]. J Neutron Res, 2003, 11(3): 113–121.
[8] POE B T, MCMILLAN P F, COTE B, et al. SiO2- Al2O3 liquids- in situ study by high-temperature 27Al NMR spectroscopy and molecular-dynamics simulation[J]. J Phys Chem, 1992, 96(21): 8220–8224.
[9] LANDRON C, LAUNAY X, RIFFLET J C, et al. Development of a levitation cell for synchrotron radiation experiments at very high temperature[J]. Nucl Instrum Meth B, 1997, 124(4): 627–632.
[10] KRISHNAN S, FELTEN J J, RIX J E, et al. Levitation apparatus for structural studies of high temperature liquids using synchrotron radiation[J]. Rev Sci Instrum, 1997, 68(9): 3512–3518.
[11] ENDERBY J E, Ansell S, Krishnan S, et al. The electrical conductivity of levitated liquids[J]. Appl Phys Lett, 1997, 71(1): 116–118.
[12] RINDONE G E. Materials processing in the reduced gravity environment of space[M]. Proceedings of the Annual Meeting in Materials processing in the reduced gravity environment of space. Massachusetts, Boston: Materials Research Society, 1982.
[13] DOREMUS R H, NORDINE P C. Materials processing in the reduced gravity environment of space[M]. Proceedings of the Annual Meeting in Materials processing in the reduced gravity environment of space. Massachusetts, Boston: Materials Research Society, 1987.
[14] COUTURES J P, RIFFLET J C, BILLARD D, et al. Contactless treatments of liquids in a large temperature range by an aerodynamic levitation device under laser heating[C]// 6th European Symposium on Material Science under Microgravity Conditions, 1987: 427–430.
[15] WEBER J K R, FELTEN J J, CHO B, et al. Glass fibres of pure and erbium- or neodymium-doped yttria alumina compositions[J]. Nature, 1998, 393(6687): 769–771.
[16] KRIVEN W M, JILAVI M H, ZHU D, et al. Synthesis and microstructure of mullite fibers grown from deeply undercooled melts[M].     Springer US, 1998.
[17] VIJAYA KUMAR M, ISHIKAWA T, Basavalingu B, et al. Thermal and optical properties of glass and crystalline phases formed in the binary R2O3-Al2O3 (R= La-Lu and Y) system[J]. J Appl Phys, 2013, 113(19): 3166–3439.
[18] BANIEL P, BELOUET C. Gas film levitation: a unique containerless technique for the preparation of fluoride glass rods[J]. J Non-Cryst Solids, 1993, 161(15): 1–6.
[19] RAY C S, Day D E. Glass Formation in Microgravity[J]. MRS Proceedings, 1986, 87: 239–252
[20] TRINH E H. Compact acoustic levitation device for studies in fluid dynamics and material science in the laboratory and microgravity[J]. Rev Sci Instrum, 1985, 56(11): 2059–2065.
[21] WEBER J K R, MERKLEY D R, ANDERSON C D, et al. Enhanced formation of calcia-gallia glass by containerless processing[J]. J Am Ceram Soc, 1993, 76(8): 2139–2141.
[22] WEBER J K R, HAMPTON D S, MERKLEY D R, et al. Aero-acoustic levitation: A method for containerless liquid-phase processing at high temperatures[J]. Rev Sci Instrum, 1994, 65(2): 456–465.
[23] RHIM W K, SANG K C, BARBER D, et al. An electrostatic levitator for high-temperature containerless materials processing in 1-g[J]. Rev Sci Instrum, 1993, 64(10): 2961–2970.
[24] HAYS C C, SCHROERS J, GEYER U, et al. Glass forming ability in the Zr-Nb-Ni-Cu-Al bulk metallic glasses[J]. J Metastable Nanocryst Mater, 2000, 8: 33–36
[25] KIM Y J, BUSCH R, JOHNSON W L, et al. Metallic glass formation in highly undercooled Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 during containerless electrostatic levitation processing[J]. Appl Phys Lett, 1994, 65(17): 2136–2138.
[26] WEBER J K R, TANGEMAN J A, KEY T S, et al. Novel synthesis of calcium oxide-aluminum oxide glasses[J]. Jpn J Appl Phys, 2002, 41(41): 3029–3030.
[27] KITAMURA N, MAKIHARA M, SATO T, et al. Glass spheres produced by magnetic levitation method[J]. J Non-Cryst Solids, 2001, S293–295(6): 624–629.
[28] WALLENBERGER F T, WESTON N E, MOTZFELDT K, et al. Inviscid melt spinning of alumina fibers: chemical jet stabilization[J]. J Am Ceram Soc, 1992, 75(3): 629–636.
[29] WALLENBERGER F T, WESTON N E, BROWN S D. Calcium aluminate glass fibers: drawing from supercooled melts versus inviscid melt spinning[J]. Mater Lett, 1991, 11(8/9): 229–235.
[30] LINES M E, MACCHESNEY J B, LYONS K B, et al. Calcium aluminate glasses as pontential ultralow-loss optical materials at 1.5-1.9 μm[J]. J Non-Cryst Solids, 1989, 107(S2/3): 251–260.
[31] HOSONO H, YAMAZAKI K, ABE Y. Dopant-free ultraviolet-sensitive calcium aluminate glasses[J]. J Am Ceram Soc, 1985, 68(11): C304–C305.
[32] HAFNER H C, KREIDL N J, WEIDEL R A. Optical and physical properties of some calcium aluminate glasses[J]. J Am Ceram Soc, 1958, 41(8): 315–323.
[33] MCMILLAN P, PIRIOU B. Raman spectroscopy of calcium aluminate glasses and crystals[J]. J Non-Cryst Solids, 1983, 55(2): 221–242.
[34] MCMILLAN P F, PETUSKEY W T, COTE B, et al. A structural investigation of CaO-Al2O3 glasses via 27Al MAS-NMR[J]. J Non-Cryst Solids, 1996, 195(3): 261–271.
[35] NEUVILLE D R, CORMIER L, MONTOUILLOUT V, et al. Structure of Mg- and Mg/Ca aluminosilicate glasses: Al-27 NMR and Raman spectroscopy investigations[J]. Am Mineral, 2008, 93(11/12): 1721–1731.
[36] LICHERON M, MONTOUILLOUT V, MILLOT F, et al. Raman and Al-27 NMR structure investigations of aluminate glasses: (1–x)Al2O3-x MO, with M=Ca, Sr, Ba and 0.5 < x < 0.75)[J]. J Non-Cryst Solids, 2011, 357(15): 2796–2801.
[37] NEUVILLE D R, HENDERSON G S, CORMIER L, et al. The structure of crystals, glasses, and melts along the CaO-Al2O3 join: Results from Raman, Al L- and K-edge X-ray absorption, and Al-27 NMR spectroscopy[J]. Am Mineral, 2010, 95(10): 1580–1589.
[38] MEI Q, BENMORE C J, SAMPATH S, et al. The structure of permanently densified CaAl2O4 glass[J]. J Phys Chem Solids, 2007, 68(2): 315–315.
[39] ETHRIDGE E C, CURRERI P A, PLINE D. Heterogeneous-nucleation and glass-formation studies of 56Ga2O3.44CaO[J]. J Am Ceram Soc, 1987, 70(8): 553–556.
[40] BAYNTON P L, RAWSON H, STANWORTH J E. Gallium oxide glasses[J]. Nature, 1957, 179(4556): 434–435.
[41] JEEVARATNAM J, GLASSER F P. The system CaO-Ga2O3[J]. J Am Ceram Soc, 2006, 44(11): 563–566.
[42] XU C, WANG C, YU J, et al. Structure and optical properties of Er-doped CaO-Al2O3 (Ga2O3) glasses fabricated by aerodynamic levitation[J]. J Am Ceram Soc, 2017, 00: 1–7.
[43] LICHERON M, MONTOUILLOUT V, Millot F, et al. Raman and 27Al NMR structure investigations of aluminate glasses: (1−x)Al2O3− xMO, with M=Ca, Sr, Ba and 0.5<x<0.75)[J]. J Non-Cryst Solids, 2011, 357(15): 2796–2801.
[44] PATTON G, MORETTI F, BELSKY A, et al. Light yield sensitization by X-ray irradiation of the BaAl4O7:Eu2+ ceramic scintillator obtained by full crystallization of glass[J]. Phys Chem Chem Phys, 2014, 16(45): 24824–24829.
[45] ALLIX M, ALAHRACHE S, Fayon F, et al. Highly transparent BaAl?O? polycrystalline ceramic obtained by full crystallization from glass[J]. Adv Mater, 2012, 24(41): 5570–5575.
[46] ALAHRACHÉ S, SAGHIR K A, CHENU S, et al. Perfectly transparent Sr3Al2O6 polycrystalline ceramic elaborated from glass crystallization[J]. Chem Mater, 2013, 25(20): 4017–4024.
[47] SKINNER L B, BARNES A C, SALMON P S, et al. Phase separation, crystallization and polyamorphism in the Y2O3-Al2O3 system[J]. J Phys Condens Matter, 2008, 20(20): 1586–1594.
[48] NASIKAS N K, SEN S, PAPATHEODOROU G N. Structural nature of polyamorphism in Y2O3-Al2O3 glasses[J]. Chem Mater, 2011, 23(11): 2860–2868.
[49] WATANABE Y, MASUNO A, INOUE H. Glass formation of rare earth aluminates by containerless processing[J]. J Non-Cryst Solids, 2012, 358(24): 3563–3566.
[50] KIDKHUNTHOD P, BOOTCHANONT A, BARNES A C. Structural investigation of gallate glass using L3-edge extended X-ray absorption spectroscopy and computer simulation[J]. J Non-Cryst Solids, 2016, 448: 27–30.
[51] YOSHIMOTO K, MASUNO A, UEDA M, et al. Low phonon energies and wideband optical windows of La2O3-Ga2O3 glasses prepared using an aerodynamic levitation technique[J]. Sci Rep, 2017, 7: 45600.
[52] ROSALESSOSA G A, MASUNO A, Higo Y, et al. High elastic moduli of a 54Al2O3-46Ta2O5 glass fabricated via containerless processing[J]. Sci Rep, 2015, 5: 15233.
[53] FUJINO S, TAKEBE H, MORINAGA K. Measurements of refractive indexes and factors affecting dispersion in oxide glasses[J]. J Am Ceram Soc, 1995, 78(5): 1179–1184.
[54] DUMBAUGH W H, LAPP J C. Heavy‐metal oxide glasses[J]. J Am Ceram Soc, 1992, 75(9): 2315–2326.
[55] SAMUNEVA B, KRALCHEV S, DIMITROV V. Structure and optical properties of niobium silicate glasses[J]. J Non-Cryst Solids, 1991, 129(1/3): 54–63.
[56] KIM S H, YOKO T. Nonlinear optical properties of TeO2-based glasses: MOx-TeO2 (M = Sc, Ti, V, Nb, Mo, Ta, and W) binary glasses[J]. J Am Ceram Soc, 1995, 78(4): 1061–1065.
[57] FLAMBARD A, VIDEAU J J, DELEVOYE L, et al. Structure and nonlinear optical properties of sodium-niobium phosphate glasses[J]. J Non-Cryst Solids, 2008, 354(30): 3540–3547.
[58] TOPOL L E, HAPPE R A. Formation of new lanthanide oxide glasses by laser spin melting and free-fall cooling[J]. J Non-Cryst Solids, 1973, 12(3): 377–390.
[59] KOZUKA H, OTA R, SOGA N. Preparation and properties of binary oxide glasses containing rate earth oxides (minor spacial issue on ceramic materials)[J]. J Soc Mater Sci Jpn, 1986, 35(388): 73–79.
[60] MASUNO A, INOUE H. High Refractive Index of 0.30La2O3-0.70Nb2O5 glass prepared by containerless processing[J]. Appl Phys Express, 2010, 3(10): 2601.
[61] CHENG Y, XU G, YU J, et al. Thermal and optical properties of high refractive index xNb2O5-(1–x)La2O3 glasses prepared by aerodynamic levitation method[J]. Mater Sci Forum, 2013, 749: 255–259
[62] MASUNO A, KOHARA S, HANNON A C, et al. Drastic connectivity change in high refractive index lanthanum niobate glasses[J]. Chem Mater, 2013, 25(15): 3056–3061.
[63] MASUNO A, INOUE H, YOSHIMOTO K, et al. Thermal and optical properties of La2O3-Nb2O5 high refractive index glasses[J]. Opt Mater Express, 2014, 4(4): 710–718.
[64] YOSHIMOTO K, MASUNO A, INOUE H, et al. Thermal stability, optical transmittance, and refractive index dispersion of La2O3-Nb2O5-Al2O3 glasses[J]. J Am Ceram Soc, 2015, 98(2): 402–407.
[65] MAO Z, DUAN J, ZHENG X, et al. Study on optical properties of La2O3-TiO2-Nb2O5 glasses prepared by containerless processing[J]. Ceram Int, 2015, 41(4): S51–S56.
[66] MA X, PENG Z, LI J. Effect of Ta2O5 Substituting on thermal and optical properties of high refractive index La2O3-Nb2O5 glass system prepared by aerodynamic levitation method[J]. J Am Ceram Soc, 2015, 98(3): 770–773.
[67] LI J, LI J, LI B, et al. An upconversion niobium pentoxide bulk glass codoped with Er3+/Yb3+ fabricated by aerodynamic levitation method[J]. J Am Ceram Soc, 2015, 98(6): 1865–1869.
[68] TAKAHASHI Y, BENINO Y, FUJIWARA T, et al. Optical second order nonlinearity of transparent Ba2TiGe2O8 crystallized glasses[J]. Appl Phys Lett, 2002, 81(2): 223–225.
[69] SAKAI R, BENINO Y, KOMATSU T. Enhanced second harmonic generation at surface in transparent nanocrystalline TeO2-based glass ceramics[J]. Appl Phys Lett, 2000, 77(14): 2118–2120.
[70] NARAZAKI A, TANAKA K, HIRAO K. Poling-induced crystallization of tetragonal BaTiO3 and enhancement of optical second-harmonic intensity in BaO-TiO2 -TeO2 glass system[J]. Appl Phys Lett, 1999, 75(21): 3399–3401.
[71] NASSAU K, WANG C A, GRASSO M. Quenched metastable glassy and crystalline phases in the system lithium-sodium-potassium metaniobate-tantalate[J]. J Am Ceram Soc, 1979, 62(9/10): 503–510.
[72] TAKASHIGE M, NAKAMURA T, TSUYA N, et al. Dielectric Constant of Amorphous PbTiO3[J]. Jpn J Appl Phys, 1980, 19(9): L555–L558.
[73] GLASS A M, LINES M E, NASSAU K, et al. Anomalous dielectric behavior and reversible pyroelectricity in roller‐quenched LiNbO3 and LiTaO3 glass[J]. Appl Phys Lett, 1977, 31(4): 249–251.
[74] YU J D, ARAI Y, MASAKI T, et al. Fabrication of BaTi2O5 glass-ceramics with unusual dielectric properties during crystallization[J]. Chem Mater, 2006, 18(8): 2169–2173.
[75] YU J, KOHARA S, ITOH K, et al. Comprehensive structural study of glassy and metastable crystalline BaTi2O5[J]. Chem Mater, 2009, 21(2): 259–263.
[76] MASUNO A, KIKUCHI Y, INOUE H, et al. Giant second harmonic generation from metastable BaTi2O5[J]. Appl Phys Express, 2011, 4(4): 042601(1–3)
[77] MASUNO A, INOUE H, YU J, et al. Refractive index dispersion, optical transmittance, and Raman scattering of BaTi2O5 glass[J]. J Appl Phys, 2010, 108(6): 277.
[78] MASUNO A, INOUE H, ARAI Y, et al. Structural-relaxation-induced high refractive indices of Ba1−xCaxTi2O5 glasses[J]. J Mater Chem, 2011, 21(43): 17441–17447.
[79] ZHANG M, YU J, PAN X, et al. Bifunction in Er3+ /Yb3+ co-doped BaTi2O5-Gd2O3 glasses prepared by aerodynamic levitation method[J]. Mater Res Bull, 2013, 48(11): 4729–4732.
[80] ARAI Y, ITOH K, KOHARA S, et al. Refractive index calculation using the structural properties of La4Ti9O24 glass[J]. J Appl Phys, 2008, 103(9): 269.
[81] KANEKO M, YU J, MASUNO A, et al. Glass Formation in LaO3/2-TiO2 binary system by containerless processing[J]. J Am Ceram Soc, 2012, 95(1): 79–81.
[82] INOUE H, WATANABE Y, MASUNO A, et al. Effect of substituting Al2O3 and ZrO2 on thermal and optical properties of high refractive index La2O3-TiO2 glass system prepared by containerless processing[J]. Opt Mater, 2011, 33(12): 1853–1857.
[83] XIANG H, GUAN L, PENG Z, et al. Preparation of high refractive index La2O3-TiO2 glass by aerodynamic levitation technique and effects of Bi2O3 substitution on its thermal and optical properties[J]. Ceram Int, 2014, 40(3): 4985–4988.
[84] 张明辉,余建定,潘秀红,等. Nd3+/Yb3+共掺La2O3-TiO2-ZrO2微晶玻璃的制备及上转换发光研究[J]. 无机材料学报, 2013, 28(8): 896–900
ZHANG Minghui, YU Jianding, PAN Xiuhong, et al. J Inorg Mater, 2013, 28(8): 896–900.
[85] ZHANG M, YU J, PAN X, et al. Increase of the blue upconversion emission in Tm3+/Yb3+ co-doped titanate glass-ceramics[J]. J Non-Cryst Solids, 2013, 378(11): 106–109.
[86] ZHANG M, LIU Y, YU J, et al. A novel upconversion TiO2-La2O3-Ta2O5 bulk glass co-doped with Er3+/Yb3+ fabricated by containerless processing[J]. Mater Lett, 2012, 66(1): 367–369.
[87] PAN X, YU J, LIU Y, et al. Infrared to visible upconversion luminescence in Er3+/Yb3+ doped titanate glass prepared by containerless processing[J]. J Lumin, 2012, 132(4): 1025–1029.
[88] MASUNO A, WATANABE Y, INOUE H, et al. Glass-forming region and high refractive index of TiO2-based glasses prepared by containerless processing[J]. Phys Status Solidi, 2012, 9(12): 2424–2427.
[89] YOSHIMURA M, COUTURES J, FOEX M. Rapid quenching of melts in the system La2O3-WO3[J]. J Mater Sci, 1977, 12(2): 415–417.
[90] YOSHIMOTO K, MASUNO A, INOUE H, et al. Transparent and high refractive index La2O3-WO3 glass prepared using containerless processing[J]. J Am Ceram Soc, 2012, 95(11): 3501–3504.
[91] HENNET L, POZDNYAKOVA I, BYTCHKOV A, et al. Levitation apparatus for neutron diffraction investigations on high temperature liquids[J]. Rev Sci Instrum, 2006, 77(5): 3683.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com