首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
全固态锂电池关键材料—固态电解质研究进展
作者:  池上森     张博晨 范丽珍 
单位:北京科技大学新材料技术研究院 北京 100083 
关键词:全固态锂电池 固态电解质 界面 
分类号:TM911
出版年,卷(期):页码:2018,46(1):21-34
DOI:
摘要:

全固态锂电池具有能量密度高、循环寿命长和高安全性等优点,成为当前的研究热点。固态电解质是全固态锂电池的核心,主要包括氧化物、硫化物、聚合物以及复合型固态电解质。当前,发展全固态锂电池的关键是设计和制备具有高离子电导率的固态电解质,解决固态电解质与电极间的固–固界面问题。本文综述了全固态锂电池固态电解质以及固态电解质与电极间固–固界面的稳定兼容问题的最新进展,并展望了未来全固态锂电池的研究重点和发展方向。

 

All-solid-state lithium batteries have become an important focus due to their high energy density, long cycling life and excellent safety. As the key part of all-solid-state lithium batteries, solid electrolytes include oxide, sulfide, polymer and composite. The key issues for developing all-solid-sate lithium rechargeable batteries include the design and preparation of solid electrolytes with high ionic conductivities, and solution of the interface resistance between solid electrolytes and electrodes. In this article, the recent developments and relative issues concerning the solid electrolytes and the interface stabilities are reviewed, and the key issues and development direction on all-solid-state lithium batteries are prospected.

基金项目:
国家自然科学基金(51532002)项目。
作者简介:
陈 龙(1984—),男,博士研究生。
参考文献:
[1] ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652–657. 
[2] ZHANG R, LI N W, CHENG X B, et al. Advanced micro/nanostructures for lithium metal anodes[J]. Adv Sci, 2017, 4(3): 1600445 (1–13).
[3] TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359–367.
[4] MANTHIRAM A, YU X, WANG S. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nat Rev Mater, 2017, 2: 16103 (1–5).
[5] CUSSEN E J. The structure of lithium garnets: cation disorder and clustering in a new family of fast Li+ conductors[J]. Chem Commun. 2006, 37(4): 412–413.
[6] MURUGAN R, THANGADURAI V, WEPPNER W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12[J]. Angew Chem Int Ed, 2007, 46(41): 7778–7781.
[7] RETTENWANDER D, BLAHA P, LASKOWSKI R, et al. DFT study of the role of Al3+ in the fast ion-conductor Li7–3xAl3+xLa3Zr2O12 garnet[J]. Chem Mater, 2014, 26(8): 2617–2623.
[8] KATHARINA M, TEODORO L, ALESSANDRO C. Solid-state electrolytes: revealing the mechanisms of Li-ion conduction in tetragonal and cubic LLZO by first-principles calculations[J]. J Phys Chem C, 2014, 118(13): 6668–6679. 
[9] KC S, LONGO R C, XIONG K, et al. Point defects in garnet-type solid electrolyte (c-Li7La3Zr2O12) for Li-ion batteries[J]. Solid state Ionics, 2014, 261: 100–105. 
[10] REN Y, DENG H, NAN C W, et al. Effects of Li source on microstructure and ionic conductivity of Al-contained Li6.75La3Zr1.75Ta0.25O12 ceramics[J]. J Eur Ceram Soc, 2015, 35(2): 561–572. 
[11] SAKAMOTO J, RANGASAMY E, KIM H, et al. Synthesis of nano-scale fast ion conducting cubic Li7La3Zr2O12[J]. Nanotechnol, 2013, 24(42): 424005.
[12] KOKAL I, SOMER M, NOTTEN P H L, et al. Sol–gel synthesis and lithium ion conductivity of Li7La3Zr2O12 with garnet-related type structure[J]. Solid State Ionics, 2011, 185(1): 42–46.
[13] ZHANG Y, CHEN F, TU R, et al. Field assisted sintering of dense Al-substituted cubic phase Li7La3Zr2O12 solid electrolytes[J]. J Power Sources, 2014, 268: 960–964.
[14] LI Y, WANG Z, LI C, et al. Densification and ionic-conduction improvement of lithium garnet solid electrolytes by flowing oxygen sintering[J]. J Power Sources, 2014, 248: 642–646.
[15] NI J E, CASE E D, SAKAMOTO J S, et al. Room temperature elastic moduli and Vickers hardness of hot-pressed LLZO cubic garnet[J]. J Mater Sci, 2012, 47(23): 7978–7985.
[16] KOTOBUKI M, MUNAKATA H, KANAMURA K. Fabrication of all-solid-state rechargeable lithium-ion battery using mille-feuille structure of Li0.35La0.55TiO3[J]. J Power Sources, 2011, 196(16): 6947–6950.
[17] ZHANG Q, SCHMIDT N, LAN J, et al. A facile method for the synthesis of the Li0.3La0.57TiO3 solid state electrolyte[J]. Chem Commun. 2014, 50(42): 5593–5596.
[18] XIONG Y, TAO H, ZHAO J, et al. Effects of annealing temperature on structure and opt-electric properties of ion-conducting LLTO thin films prepared by RF magnetron sputtering[J]. J Alloy Compd, 2011, 509(5): 1910–1914.
[19] YASUHIRO H, TSUKASA I, HIROO K, et al. Lithium ion conductivity of polycrystalline perovskite La0.672–xLi3xTiO3 with ordered and disordered arrangements of the A-site ions[J]. Solid State Ionics, 1998, 108(1/4): 407–413.
[20] YASUHIRO H, YUJI H, HIROO K, et al. Order–disorder of the A-site ions and lithium ion conductivity in the perovskite solid solution La0.67–xLi3xTiO3 (x=0.11)[J]. Solid State Ionics, 1999, 121(1/4): 245–251.
[21] STRAMARE S, THANGADURAI V, WEPPNER W. Lithium lanthanum titanates: A review[J]. Chem Mater, 2003, 15(21): 3974–3990.
[22] GENG H, MEI A, LIN Y, et al. Effect of sintering atmosphere on ionic conduction and structure of Li0.5La0.5TiO3 solid electrolytes[J]. Mater Sci Eng B. 2009, 164(2): 91–95.
[23] BAN C W, CHOI G M. The effect of sintering on the grain boundary conductivity of lithium lanthanum titanates[J]. Solid State Ionics, 2001, 140(3/4): 285–292.
[24] MEI A, WANG X, NAN C W, et al. Enhanced ionic transport in lithium lanthanum titanium oxide solid state electrolyte by introducing silica[J]. Solid State Ionics, 2008, 179(39): 2255–2259.
[25] MEI A, WANG X, NAN C W, et al. Role of amorphous boundary layer in enhancing ionic conductivity of lithium-lanthanum-titanate electrolyte[J]. Electrochim Acta, 2010, 55(8): 2958–2963.
[26] KOBAYASHI Y, MIYASHIRO H, TAKEUCHI T, et al. All-solid-state lithium secondary battery with ceramic/polymer composite electrolyte[J]. Solid State Ionics, 2002, S152–S153(02): 137–142.
[27] GOODENOUGH J B, HONG H Y P, KAFALAS J A. Fast Na+-ion transport in skeleton structures[J]. Mater Res Bull, 1976, 11(2): 203–220.
[28] KOTOBUKI M, KOISHI M. Preparation of Li1.5Al0.5Ti1.5(PO4)3 solid electrolyte via a sol-gel route using various Al sources[J]. Ceram Int, 2013, 39(4): 4645–4649.
[29] KOTOBUKI M, KOISHI M, KATO Y. Preparation of Li1.5Al0.5Ti1.5(PO4)3 solid electrolyte via a co-precipitation method[J]. Ionics, 2013, 19(12): 1945–1948.
[30] EPP V, MA Q, HAMMER E M, et al. Very fast bulk Li ion di?usivity in crystalline Li1.5Al0.5Ti1.5(PO4)3 as seen using NMR relaxometry[J]. Phys Chem Chem Phys, 2015, 17: 32115–32121.
[31] ZHANG T, IMANISHI N, HASEGAWA S, et al. Water-stable lithium anode with the three-layer construction for aqueous lithium–air secondary batteries[J]. Electrochem Solid State Lett, 2009, 12(7): A132–A137.
[32] THOKCHOM J S, KUMAR B. Composite effect in superionically conducting lithium aluminium germanium phosphate based glass-ceramic[J]. J Power Sources, 2008, 185(1): 480–485.
[33] XU X, WEN Z, WU X, et al. Lithium ion-conducting glass-ceramics of Li1.5Al0.5Ge1.5(PO4)3–xLi2O (x=0.0-0.20) with good electrical and electrochemical properties[J]. J Am Ceram Soc, 2007, 90(9): 2802–2806.
[34] BRAGA M H, FERREIRA J A, STOCKHAUSEN V, et al. Novel Li3ClO based glasses with superionic properties for lithium batteries[J]. J Mater Chem A, 2014, 2(15): 5470–5480.
[35] BRAGA M H, MURCHISON A J, Ferreira J A, et al. Glass-amorphous alkali-ion solid electrolytes and their performance in symmetrical cells[J]. Energy Environ Sci, 2016, 9(3): 948–954.
[36] BATES J B, DUDNEY N J, GRUZALSKI G R, et al. Electrical properties of amorphous lithium electrolyte thin films[J]. Solid State Ionics, 1992, 53–56: 647–654.
[37] HERBERT E G, TENHAEFF W E, DUDNEY N J, et al. Mechanical characterization of LiPON films using nanoindentation[J]. Thin Solid Films, 2011, 520(1): 413–418.
[38] JOO K H, SOHN H J, VINATIER P, et al. Lithium ion conducting lithium sulfur oxynitride thin film[J]. Electrochem Solid State Lett, 2004, 7(8): A256–A258.
[39] WU F, LIU Y, CHEN R, et al. Preparation and performance of novel Li-Ti-Si-P-O-N thin-film electrolyte for thin-film lithium batteries[J]. J Power Sources, 2009, 189(1): 467–470.
[40] XIE J, OUDENHOVEN J F M, HARKS P P R M L, et al. Chemical vapor deposition of lithium phosphate thin-films for 3D all-solid-state Li-ion batteries[J]. J Electrochem Soc, 2015, 162(3): A249–A254.
[41] WEST W C, HOOD Z D, ADHIKARI S P, et al. Reduction of charge-transfer resistance at the solid electrolyte-electrode interface by pulsed laser deposition of films from a crystalline Li2PO2N source[J]. J Power Sources, 2016, 312: 116–122.
[42] NISULA M, SHINDO Y, KOGA H, et al. Atomic layer deposition of lithium phosphorus oxynitride[J]. Chem Mater, 2015, 27(20): 6987–6993.
[43] PEARSE A J, SCHMITT T E, FULLER E J, et al. Nanoscale solid state batteries enabled by thermal atomic layer deposition of a lithium polyphosphazene solid state electrolyte[J]. Chem Mater, 2017, 29(8): 3740–3753.
[44] ZHENG N, BU X, FENG P. Synthetic design of crystalline inorganic chalcogenides exhibiting fast-ion conductivity[J]. Nature, 2003, 426(6965): 428–432.
[45] KANNO R, HATA T, KAWAMOTO Y, et al. Synthesis of a new lithium ionic conductor, thio-LISICON-lithium germanium sulfide system[J]. Solid State Ionics, 2000, 130(1): 97–104.
[46] KAMAYA N, HOMMA K, YAMAKAWA Y, et al. A lithium superionic conductor[J]. Nat Mater, 2011, 10(9): 682–689.
[47] KATO Y, HORI S, SAITO T, et al. High-power all-solid-state batteries using sulfide superionic conductors[J]. Nat Energy, 2016, 1: 16030 (1–3).
[48] KOMIYA R, HAYASHI A, MORIMOTO H, et al. Solid state lithium secondary batteries using an amorphous solid electrolyte in the system (100-x)(0.6Li2S-0.4SiS2)·xLi4SiO4, obtained by mechanochemical synthesis[J]. Solid State Ionics, 2001, 140(1/2): 83–87.
[49] OHTOMO T, HAYASHI A, TATSUMISAGO M, et al. All-solid-state lithium secondary batteries using the 75Li2S-25P2S5, glass and the 70Li2S-30P2S5, glass-ceramic as solid electrolytes[J]. J Power Sources, 2013, 233: 231–235.
[50] MIZUNO F, HAYASHI A, TADANAGA K, et al. New, highly ion-conductive crystals precipitated from Li2S-P2S5 glasses[J]. Adv Mater, 2005, 17(7): 918–921. 
[51] HAYASHI A, HAMA S, MINAMI T, et al. Formation of superionic crystals from mechanically milled Li2S-P2S5 glasses[J]. Electrochem Commun, 2003, 5(2): 111–114.
[52] UJIIE S, HAYASHI A, TATSUMISAGO M. Structure, ionic conductivity and electrochemical stability of Li2S-P2S5-LiI glass and glass-ceramic electrolytes[J]. Solid State Ionics, 2012, 211: 42–45.
[53] UJIIE S, INAGAKI T, HAYASHI A, et al. Conductivity of 70Li2S·30P2S5 glasses and glass–ceramics added with lithium halides[J]. Solid State Ionics, 2014, 263: 57–61.
[54] OHTOMO T, HAYASHI A, TATSUMISAGO M, et al. Suppression of H2S gas generation from the 75Li2S·25P2S5 glass electrolyte by additives[J]. J Mater Sci, 2013, 48(11): 4137–4142.
[55] ARMAND M B, CHABAGNO J M, DUCLOT M J. Poly-ethers as solid electrolytes[C]//Intenational Conference on Fast Ion Transport in Solids, Electrodes and Electrolytes. USA: Lake Geneva, WI. 1979, 131–136.
[56] WRIGH P V. Polymer electrolytes—The early days[J]. Electrochim Acta, 1998, 43(10/11): 1137–1143.
[57] CHU P P, JEN H P, FANGREY LO A, et al. Exceedingly high lithium conductivity in novolac type phenolic resin/PEO blends[J]. Macromolecules, 1999, 32(14): 4738–4740.
[58] SENGWA R J, DHATARWAL P, CHOUDHARY S. Role of preparation methods on the structural and dielectric properties of plasticized polymer blend electrolytes: Correlation between ionic conductivity and dielectric parameters[J]. Electrochim Acta, 2014, 142: 359–370.
[59] KONO M. Network polymer electrolytes with free chain ends as internal plasticizer[J]. J Electrochem Soc, 1998, 145(5): 1521–1527.
[60] YOUNG N P, DEYAUX D, KHURANA R, et al. Investigating polypropylene- poly(ethylene oxide)-polypropylene triblock copolymers as solid polymer electrolytes for lithium batteries[J]. Solid State Ionics, 2014, 263(10): 87–94.
[61] PORCARELLI L, GERBALDI C, BELLA F, et al. Super soft all-ethylene xxide polymer electrolyte for safe all-solid lithium batteries[J]. Sci Rep, 2016, 6(1): 19892.
[62] PAN Q, SMITH D M, QI H, et al. Hybrid electrolytes with controlled network structures for lithium metal batteries[J]. Adv Mater, 2015, 27(39): 5995–6001.
[63] OKUMURA T, NISHIMURA S. Lithium ion conductive properties of aliphatic polycarbonate[J]. Solid State Ionics, 2014, 267: 68–73.
[64] TOMINAGA Y, YAMAZAKI K. Fast Li-ion conduction in poly(ethylene carbonate)-based electrolytes and composites filled with TiO2 nanoparticles[J]. Chem Commun, 2014, 50(34): 4448–4450.
[65] MORIOKA T, NAKANO K, TOMINAGA Y. Ion-conductive properties of a polymer electrolyte based on ethylene carbonate/ethylene oxide random copolymer[J]. Macromole Rapid Commun, 2017, 38(8): 1600652 (1–5.).
[66] SUN B, MINDEMARK J, EDSTROM K, et al. Polycarbonate-based solid polymer electrolytes for Li-ion batteries[J]. Solid State Ionics, 2014, 262: 738–742.
[67] MINDEMARK J, SUN B, TORMA E, et al. High-performance solid polymer electrolytes for lithium batteries operational at ambient temperature[J]. J Power Sources, 2015, 298: 166–170.
[68] ZHANG J, ZHAO J, YUE L, et al. Safety-reinforced poly(propylene carbonate)-based all-solid-state polymer electrolyte for ambient-temperature solid polymer lithium batteries[J]. Adv Energy Mater, 2015, 5(24): 1501082.
[69] CHAI J, LIU Z, MA J, et al. In situ generation of poly (vinylene carbonate)-based solid electrolyte with interfacial stability for LiCoO2 lithium batteries[J]. Adv Sci, 2017, 4(2): 1600377.
[70] OH B, VISSERS D, ZHANG Z, et al. New interpenetrating network type poly(siloxane-g-ethylene oxide) polymer electrolyte for lithium battery[J]. J Power Sources, 2003, S119-S121(6): 442–447.
[71] WANG F, HU C, LO S, et al. The investigation of electrochemical properties and ionic motion of functionalized copolymer electrolytes based on polysiloxane[J]. Solid State Ionics, 2009, 180(4/5): 405–411.
[72] HOOPER R, LYONS L J, MAPES M K, et al. Highly conductive siloxane polymers[J]. Macromolecules, 2001, 34(4): 931–936.
[73] ROSSI N A A, WANG Q, Amine K, et al. Silicon-containing carbonates-synthesis, characterization, and additive effects for silicon-based polymer electrolytes[J]. Silicon, 2010, 2(4): 201–208.
[74] LI J, LIN Y, YAO H, et al. Tuning thin-film electrolyte for lithium battery by grafting cyclic carbonate and combed poly(ethylene oxide) on polysiloxane[J]. Chem Sus Chem, 2014, 7(7): 1901–1908.
[75] WALKER C N, VERSEK C, TOUMINEN M, et al. Tunable networks from thiolene chemistry for lithium ion conduction[J]. ACS Macro Lett, 2012, 1(6): 737–741.
[76] FAN L Z, NAN C W, ZHAO S. Effect of modified SiO2 on the properties of PEO-based polymer electrolytes[J]. Solid State Ionics, 2003, 164(1/2): 81–86.
[77] CROCE. F, SETTIMI. L, SCROSATI. B, et al. Nanocomposite, PEO-LiBOB polymer electrolytes for low temperature, lithium rechargeable batteries[J]. J New Mater Electrochem Systems, 2006, 9(1): 3–9.
[78] ITOH T, ICHIKAWA Y, UNO T, et al. Composite polymer electrolytes based on poly(ethylene oxide), hyperbranched polymer, BaTiO3 and LiN(CF3SO2)2[J]. Solid State Ionics, 2003, 156(3/4): 393–399.
[79] FAN L Z, NAN C W, DANG Z. Effect of modified montmorillonites on the ionic conductivity of (PEO)16LiClO4, electrolytes[J]. Electrochim Acta, 2002, 47(21): 3541–3544.
[80] JUNG Y C, LEE S M, CHOI J H, et al. All solid-state lithium batteries assembled with hybrid solid electrolytes[J]. J Electrochem Soc, 2015, 162(4): A704–A710.
[81] ZHAO Y, WU C, PENG G, et al. A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries[J]. J Power Sources, 2016, 301: 47–53.
[82] ZHANG J, ZHAO N, ZHANG M, et al. Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide[J]. Nano Energy, 2016, 28: 447–454.
[83] LIU W, LIU N, SUN J, et al. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers[J]. Nano Lett, 2015, 15: 2740–2745
[84] GERBALDI C, NAIR J R, KULANDAINATHAN M A, et al. Innovative high performing metal organic framework (MOF)-laden nanocomposite polymer electrolytes for all-solid-state lithium batteries[J]. J Mater Chem A, 2014, 2(26): 9948–9954.
[85] ZHOU W, GAO H, GOODENOUGH J B. Low-cost hollow mesoporous polymer spheres and all-solid-state lithium, sodium batteries[J]. Adv Energy Mater, 2016, 6(1): 1501802.
[86] YAMADA H. Interfaces of solid electrolytes: fundamentals and applications[J]. J Indian Inst Sci, 2016, 96(4): 315–323.
[87] WU J F, PANG W K, PETERSON V K, et al. Garnet-type fast Li-ion conductors with high ionic conductivities for all-solid-state batteries[J]. ACS Appl Mater Interface, 2017, 9(14): 12461–12468.
[88] ZARABIAN M, BARTOLINI M, PEREIRA ALMAO P, et al. X-ray photoelectron spectroscopy and AC impedance spectroscopy studies of Li-La-Zr-O solid electrolyte thin film/LiCoO2 cathode interface for all-solid-state Li batteries[J]. J Electrochem Soc, 2017, 164(6): A1133–A1139.
[89] LIU T, REN Y, NAN C W, et al. Achieving high capacity in bulk-type solid-state lithium ion battery based on Li6.75La3Zr1.75Ta0.25O12 electrolyte: Interfacial resistance[J]. J Power Sources, 2016, 324: 349–357.
[90] KATO T, HAMANAKA T, YAMAMOTO K, et al. In-situ Li7La3Zr2O12/LiCoO2 interface modification for advanced all-solid-state battery[J]. J Power Sources, 2014, 260: 292–298.
[91] VAN DEN BROEK J, AFYON S, RUPP J L M. Interface-engineered all-solid-state Li-ion batteries based on garnet-type fast Li+ conductors[J]. Adv Energy Mater, 2016, 6(19): 1600736. 
[92] REN Y, SHEN Y, NAN C W, et al. Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte[J]. Electrochem Commun, 2015, 57: 27–30.
[93] HAN X, GONG Y, FU K K, et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries[J]. Nat Mater, 2016, 16(5): 572–575.
[94] LI Y, XU B, XU H, et al. Hybrid polymer/garnet electrolyte with a small interfacial resistance for lithium-ion batteries[J]. Angew Chem Int Ed, 2017, 56(3): 753–756.
[95] ZHOU W, WANG S, LI Y, et al. Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte[J]. J Am Chem Soc, 2016, 138(30): 9385–9388.
[96] OHTA N, TAKADA K, ZHANG L, et al. Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification[J]. Adv Mater, 2006, 18(17): 2226–2229.
[97] TAKADA K, OHTA N, ZHANG L, et al. Interfacial modification for high-power solid-state lithium batteries[J]. Solid State Ionics, 2008, 179(27/32): 1333–1337.
[98] SEINO Y, OTA T, TAKADA K. High rate capabilities of all-solid-state lithium secondary batteries using Li4Ti5O12-coated LiNi0.8Co0.15Al0.05O2 and a sulfide-based solid electrolyte[J]. J Power Sources, 2011, 196(15): 6488–6492.
[99] OHTA N, TAKADA K, SAKAGUCHI I, et al. LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries[J]. Electrochem Commun, 2007, 9(7): 1486–1490.
[100] YAO X, LIU D, WANG C, et al. High-energy all-solid-state lithium batteries with ultralong cycle life[J]. Nano Lett, 2016, 16(11): 7148–7154.
[101] VISBAL H, AIHARA Y, ITO S, et al. The effect of diamond-like carbon coating on LiNi0.8Co0.15Al0.05O2 particles for all solid-state lithium-ion batteries based on Li2S–P2S5 glass-ceramics[J]. J Power Sources, 2016, 314: 85–92.
[102] WHITELEY J M, WOO J H, HU E, et al. Empowering the lithium metal battery through a silicon-based superionic conductor[J]. J Electrochem Soc, 2014, 161(12): A1812–A1817.
[103] WENZEL S, RANDAU S, LEICHTWEISS T, et al. Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode[J]. Chem Mater, 2016, 28(7): 2400–2407.
[104] WENZEL S, WEBER D A, LEICHTWEISS T, et al. Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte[J]. Solid State Ionics, 2016, 286: 24–33.
[105] YAMADA T, ITO S, OMODA R, et al. All solid-state lithium–sulfur battery using a glass-type P2S5-Li2S electrolyte: benefits on anode kinetics[J]. J Electrochem Soc, 2015, 162(4): A646–A651.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com