首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
多级ZnO纳米片/Fe负极的制备及锂电性能
作者:侯宏英 段继祥 廖启书     代志鹏 李栋栋 余成义 
单位:昆明理工大学材料科学与工程学院 昆明 650093 
关键词:氧化锌纳米片 负极 锂离子电池 
分类号:O539
出版年,卷(期):页码:2018,46(1):35-39
DOI:
摘要:

通过电解液中NO3–的电化学还原、Zn(OH)2的化学沉积及后续的水解反应,在Fe箔表面生成了一层多级ZnO纳米片(ZnONS),并研究了其微观形貌、微观结构、电化学储锂性能及反应机理。结果表明:多级ZnO纳米片确实形成并紧密结合在Fe箔表面,而且,用于锂离子电池负极时,多级ZnONS/Fe负极的首次充–放电比容量分别为633和1 564 mA·h/g,Coulomb效率为41%;第2次循环的充–放电比容量分别为564和595 mA·h/g,Coulomb效率增加到95%。循环充放电50次时,放电比容量仍达200 mA·h/g,表现了良好的循环稳定性和倍率性能。多级ZnONS/Fe负极的首次不可逆容量损失,主要与电解液的分解和固态电解质界面膜的形成有关。

Hierarchical ZnO nanosheets (ZnONS) were produced on Fe foil by electrochemical reduction of NO3-, chemical deposition of Zn(OH)2 and subsequent hydrolysis reaction. Its micro-morphology, microstructure, electrochemical Li-storage performance and reaction mechanism were investigated. The results showed that hierarchical ZnONS form and firmly attach onto the surface of Fe foil. Furthermore, the hierarchical ZnONS anode delivered an initial charge capacity of 633 mA·h/g and discharge capacity of 1 564 mA·h/g; at the second cycle, its charge and discharge capacities become to be 564 and 595 mA·h/g, respectively; even after 50 cycles, the discharge capacity remains over 200 mA·h/g, presenting high cyclic performance and rate performances.  The large initial irreversible capacity loss of the hierarchical ZnONS anode is believed to be originated from the decomposition of electrolyte and the formation of solid electrolyte interface (SEI) film

基金项目:
国家自然科学基金(51363011);教育部第46批留学归国科研启动基金(6488–20130039);云南省中青年学术技术带头人后备人才;昆明理工大学重点学科建设项目(14078232);昆明理工大学学科方向团队项目(14078311)资助。
作者简介:
侯宏英(1971—),女,博士,教授。
参考文献:
[1] HOCHBAUM A I, YANG P D. Semiconductor nanowires for energy conversion[J]. Chem Rev, 2009, 110(1): 527–546.
[2] 梅带娣, 肖亮, 曹明磊. 氧化锌作为锂离子电池负极的制备及电性能研究[J]. 广东化工, 2014, 41(17): 25–16.
MEI Daidi, XIAO Liang, CAO Minglei. Guangdong Chem Ind (in Chinese), 2014, 41(17): 25–16.
[3] XU S, WANG Z L. One-dimensional ZnO nanostructures:  Solution growth and functional properties[J]. Nano Res, 2011, 4(11): 1013–1098.
[4] QUARTARONE E, DALL’ASTA V, RESMINI C, et al. Graphite-coated ZnO nanosheets as high-capacity, highly stable and binder-free anodes for lithium-ion batteries[J]. J Power Sources, 2016, 320: 314–321.
[5] 孟瑞晋, 侯宏英, 刘显茜, 等. 反应时间对二氧化钛纳米管阵列的形成及脱嵌Li+性能的影响[J]. 硅酸盐学报, 2016, 44(6): 836–840.
MENG RJ, HOU HY, LIU XX, et al. J Chin Ceram Soc, 2016, 44(6): 836–840.
[6] 刘松, 侯宏英, 刘显茜, 等. 多级柏叶状Cu2O/Cu负极的制备及其锂电性能[J]. 硅酸盐学报, 2017, 45(7): 1–5. 
LIU Song, HOU Hongyin, LIU Xianxian, et al. J Chin Ceram Soc, 2017, 45(7): 1–5.
[7] PEULON S, LINCOT D. Mechanistic study of cathodic electrodeposition of zinc oxide and zinc hydroxychloride films from oxygenated aqueous zinc chloride solutions[J]. J Electrochem Soc, 1998, 145(3): 864–874.
[8] KICIR N, TÜKEN T, ERKEN O, et al. Nanostructured ZnO films in forms of rod, plate and flower: Electrodeposition mechanisms and characterization[J]. Appl Surf Sci, 2016, 377: 191–199.
[9] LV J G, SUN Y, ZHAO M, et al. Rectifying properties of ZnO thin films deposited on FTO by electrodeposition technique[J]. Appl Surf  Sci, 2016, 366: 348–352.
[10] BASHIRNEZHAD K, BAZRI S, SAFAEI M R, et al. Viscosity of nanofluids: A review of recent experimental studies[J]. Int Commun Heat Mass Transfer, 2016, 73: 114–123.
[11] PRADHAN D, LEUNG K T, et al. Controlled growth of two-dimensional and one-dimensional ZnO nanostructures on indium tin oxide coated glass by direct electrodeposition[J]. Langmuir, 2008, 24(17): 9707–9716.
[12] 丁建旭, 廖其龙, 杨定明, 等. 微乳液体系制备Fe2B包覆纳米α-Fe及其性能研究[J]. 化工新型材料, 2007, 35(2): 25–29.
DING J X, LIAO Q L, YANG D M, et al. New Chem Mater (in Chinese), 2007, 35(2):25–29.
[13] REN Z M, WANG Z Y, CHEN C, et al. Preparation of carbon-encapsulated ZnO tetrahedron as an anode material for ultralong cycle life performance lithium-ion batteries[J]. Electrochim Acta, 2014, 146(5): 52–59.
[14] BRESSER D, MUELLER F, FIEDLER M, et al. Transition-metal-doped zinc oxide nanoparticles as a new lithium-ion anode material[J]. Chem Mater, 2013, 25(24): 4977–4985.
[15] PARK K T, XIA F, KIM S W, et al. Facile synthesis of ultrathin ZnO nanotubes with well-organized hexagonal nanowalls and sealed layouts: applications for lithium ion battery anodes[J]. J Phys Chem C, 2013, 117(2): 1037–1043.
[16] FU Z W, HUANG F, ZHANg Y, et al, The electrochemical reaction of zinc oxide thin films with lithium, J Electrochem Soc, 2003, 150(6): A714–A720..
[17] SHARMA Y, SHARMA N, SUBBARAO G V, et al. Nanophase ZnCo2O4 as a high performance anode material for li-ion batteries[J]. Adv Funct Mater, 2007, 17(15): 2855–2861.
[18] DUAN J X, HOU H Y, LIU X X, et al. High performance PPO/Ti3+/TiO2NT membrane/ electrode for lithium ion battery[J]. Ceramics Int, 2016, 42(15): 16611–16618.
[19] MENG R J, HOU H Y, LIU X X, et al. Binder-free combination of graphene nanosheets with TiO2 nanotube arrays for lithium ion battery anode[J]. J Porous Mater, 2016, 23(3): 569–575.
[20] CUI Y, ZHAO X L, GUO R S. High rate electrochemical performances of nanosized ZnO and carbon co-coated LiFePO4 cathode[J]. Mater Res Bull, 2010, 45(7): 844–849.
[21] XIAO C, ZHANG S, WANG S, et al. ZnO nanoparticles encapsulated in a 3D hierarchical carbon framework as anode for lithium ion battery, Electrochim Acta, 2016, 189: 245–251.
 
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com