首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
Cd掺杂钙铝石多孔电子化合物的制备及其电学性能
作者:    江包家琪 郭兴忠 
单位:浙江大学材料科学与工程学院 杭州 310027 
关键词:钙铝石 电子化合物 掺杂 大孔 
分类号:TQ332
出版年,卷(期):页码:2018,46(1):0-0
DOI:
摘要:

采用溶胶–凝胶伴随相分离法并结合真空还原工艺制备了Cd掺杂钙铝石(Ca(12–x)CdxAl7O33)电子化合物多孔材料,研究了Cd掺杂对钙铝石电子化合物的显微结构、晶体变化及其电学性能的影响。结果表明:Cd掺杂钙铝石含有全贯通网络状的大孔微观结构,大孔骨架致密稳定,孔隙率最高达66%;1 100 ℃热处理后,Cd元素取代较为活泼的钙离子,使得体系更为稳定,且不会破坏钙铝石本身较为稳定的笼状结构;经真空900 ℃还原,Cd掺杂钙铝石由绝缘体变为电子化合物,具有一定导电能力,其电子浓度最高可达6.904×1013 cm–3。

 

Cd-doped mayenite (Ca(12–x)CdxAl14O33) porous electrides were prepared by a phase separation-assisted sol-gel technology accompanied by vacuum reduction process. The effects of Cd doping amount on the microstructure, crystalline phase and electrical properties of mayenite electrides were investigated in detail. The results show that the as-prepared Cd-doped mayenite possesses a co-continuous macrostructure with the dense skeletons and the porosity as high as 66%. After heat treatment at 1100 ℃, the Cd element doping does not destroy the “cage” structure of mayenite, while replaces a certain amount of more active calcium ions in the mayenite, making the structure more stable. The Cd-doped mayenite could transform from the insulator into a certain conductivity of the electride material after reduced at 900 ℃ under vacuum environment, whose electron concentration is up to 6.904×1013 cm–3.

基金项目:
国家自然科学基金项目(51372225)。
作者简介:
王 睿(1991—),男,博士研究生。
参考文献:

DYE J L. Chemistry. Electrons as anions[J]. Science, 2003, 301(5633): 607–8.

[2] DYE J L. Electrides: ionic salts with electrons as the anions[J]. Science, 1990, 247(4943): 663–8.

[3] EISBERG R, RESNICK R, SULLIVAN J D. Quantum physics of atoms, molecules, solids, nuclei and particles[J]. Phys Today, 1974, 39(3): 110–111.

[4] AND J L D, DEBACKER M G. Physical and chemical properties of alkalides and electrides[J]. Annual Rev Phys Chem, 1987, 38(1): 271–299.

[5] WAGNER M J, DYE J L. Alkalides, electrides and expanded metals[J]. Annual Rev Mater Res, 2003, 23(1): 223–253

[6] DYE J L. Electrides:  From 1D heisenberg chains to 2D pseudo-metals[J]. Inorgan Chem, 1997, 36(18): 3816–3826.

[7] MATSUISHI S, TODA Y, MIYAKAWA M, et al. High‐density electron anions in a nanoporous single crystal: [Ca24Al28O64]4+(4e–)[J]. Science, 2003, 301(5633): 626–9.

[8] TOLKACHEVA A S, SHKERIN S N, KORZUN I V, et al. Phase transition in mayenite Ca12Al14O33[J]. Russ J Inorgan Chem, 2012, 57(7): 1014–1018. 

[9] TOLKACHEVA A S, SHKERIN S N, KORZUN I V, et al. Phase transition in mayenite Ca12Al14O33[J]. Russ J Inorgan Chem, 2012, 57(7): 1014–1018. 

[10] CHRISTENSEN A N, SANDSTRÖM M, MAARTMANN-MOE K, et al. Neutron powder diffraction profile refinement studies on 

Ca11.3Al14O32.3 and CaClO(D0.88H0.12)[J]. Acta Chem Scand, 1987: 110–112.

[11] KIM S, MIYAKAWA M, HAYASHI K, et al. Simple and efficient fabrication of room temperature stable electride: melt-solidification and glass ceramics[J]. J Am Chem Soc, 2005, 127(5): 1370.

[12] KIM S W, MATSUISHI S, MIYAKAWA M, et al. Fabrication of room temperature-stable 12CaO·7Al2O3, electride: a review[J]. J Mater Sci Mater Electron, 2007, 18(1): 5–14.

[13] KIM S W, TODA Y, HAYASHI K, et al. Synthesis of a room temperature stable 12CaO·7Al2O3 Electride from the Melt and Its Application as an Electron Field Emitter[M]. Chem Mater, 2006, 18(7): 1938–1944.

[14] MATSUISHI S, NOMURA T, HIRANO M, et al. Direct synthesis of powdery inorganic electride [Ca24Al28O64]4+(e−)4 and determination of oxygen stoichiometry[J].  Chem Mater, 2009, 21(13): 2589–2591.

[15] GUO X, CAI X, SONG J, et al. Facile synthesis of monolithic mayenite with well-defined macropores via an epoxide-mediated sol-gel process accompanied by phase separation[J]. New J Chem, 2014, 38(12): 5832–5839.

[16] 郭兴忠, 蔡晓波, 宋杰, 等. 大孔钙铝石块体材料的制备及表征[J]. 无机材料学报, 2015, 30(2): 141–146.

GUO Xing-Zhong, CAI Xiao-Bo, SONG Jie, et al. J Inorgan Mater (in Chinese), 30(2): 141–146.

 

服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com