首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
Ru负载WO3纳米颗粒对NH3的气敏特性
作者:  花中秋 田学民   王天赐   邱志磊 
单位:河北工业大学电子信息工程学院 天津市电子材料与器件重点实验室 天津 300401 
关键词:三氧化钨  氨气 气敏性能 
分类号:TP212.2
出版年,卷(期):页码:2018,46(1):70-77
DOI:
摘要:

 采用酸化法制备了片状WO3纳米颗粒,通过动态配气测试系统测试了WO3对低浓度氨气(质量分数为2×10?6~20×10?6)的气敏性能。结果表明:制备的WO3对氨气的气敏性能较弱。为提高WO3纳米颗粒对氨气的气敏响应能力,采用浸渍法在WO3纳米颗粒表面负载了Ru元素。研究显示:Ru修饰改性的WO3对氨气的气敏响应显著提高,Ru-WO3对NH3的气敏响应随Ru的负载量及传感器工作温度的升高表现为先增大后减小,其中1%Ru-WO3在350 ℃时对NH3的气敏响应最好,且能响应低至1×10?6的NH3,同时,Ru-WO3在氢气还原后对NH3的气敏响应也得到了显著提高。还探究了氨气的气敏响应机理,初步认为表面吸附氧是WO3及Ru-WO3对NH3气敏响应的起源。

 WO3 nanoflakes were prepared via an acidification method, and the gas sensing properties of WO3 to low concentrations of ammonia gas (i.e., 2×10?6?20×10?6 in mass fraction) were investigated in a dynamic gas distribution system. The results indicate that the response properties of the prepared WO3 to NH3 are relatively low. In order to promote the response to NH3, ruthenium (Ru) was loaded on the surface of WO3 nanoflakes by an impregnation method. The response to NH3 is significantly improved due to the Ru modification, the gas sensing response of Ru-WO3 to NH3 firstly increases and then decreases with the increases of Ru loading amount and sensor operating temperature. The 1% Ru-WO3 has the maximum gas response to NH3 at 350 ºC and can respond to NH3 at a low concentration of 1×10?6. Simultaneously, the gas response of Ru-WO3 to NH3 after hydrogen reduction is also enhanced. In addition, the sensing mechanism of NH3 was also discussed. It is indicated that the origin of NH3 gas sensing response of WO3 and Ru-WO3 is the surface adsorption oxygen.

基金项目:
天津市自然科学基金(15JCYBJC52100);国家自然科学基金(61501167);河北省自然科学基金(F2016202214)项目。
作者简介:
曾 艳(1991—),女,硕士研究生。
参考文献:

 [1] STR C D, NATALE A, PAOLESSE R, et al. Solid-state gas sensors for breath analysis: A review[J]. Anal Chim Acta, 2014, 824: 1?17.

[2] KIM K H, JAHAN S A, KABIR E. A review of breath analysis for diagnosis of human health[J]. Trends Anal Chem, 2012, 33: 1?8.
[3] TIMMER B, OLTHUIS W, BERG A. Ammonia sensors and their applications-a review[J]. Sens Actuators B, 2005, 107: 666?677.
[4] 吕宁. WO3纳米纤维的制备及其气敏特性的研究[D]. 长春: 吉林大学, 2012.
LV Ning. Preparation and gas sensing characteristics of WO3 nanofibers(in Chinese, dissertation). Changchun: Jilin University, 2012.
[5] FAN Kai, GUO Jing, CHA Limei, et al. Atomic layer deposition of ZnO onto Fe2O3 nanoplates for enhanced H2S sensing[J]. J Alloy Compd, 2017, 698: 336–340.
[6] GUO Wei, MEI Lin, WEN Jianfeng, et al. High-response H2S sensor based on ZnO/SnO2 heterogeneous nanospheres[J]. RSC Adv, 2016, 6: 15048?15053.
[7] BAO Meng, CHEN Yujiao, LI Fang, et al. Plate-like p–n heterogeneous NiO/WO3 nanocomposites for high performance room temperature NO2 sensors[J]. Nanoscale, 2014, 6: 4063?4066.
[8] GÜNTNER Andreas T, RIGHETTONI Marco, PRATSINIS Sotiris E. Selective sensing of NH3 by Si-doped α-MoO3 for breath analysis[J]. Sens Actuators B, 2016, 223: 266?273.
[9] STAERZ Anna, WEIMAR Udo, BARSAN Nicolae. Understanding the potential of WO3 based sensors for breath analysis[J]. Sensors, 2016, 16(1815): 1?16.
[10] 傅武俊, 郑晓玲, 许交兴, 等. 氨合成钌催化剂的制备及催化活  性[J]. 福州大学学报, 2003, 31(3): 340?343.
FU Wujun, ZHENG Xiaoling, XU Jiaoxing, et al. J Fuzhou Univ (in Chinese), 2003, 31(3): 340?343.
[11] LI Y, PAN C G, HAN W F, et al. An efficient route for the preparation of activated carbon supported ruthenium catalysts with high performance for ammonia synthesis[J]. Catal Today, 2011, 174(1): 97?105.
[12] 王自庆, 张留明, 林建新, 等. 纳米材料负载钌催化剂的制备与应用[J]. 催化学报, 2012, 33(3): 377?388.
WANG Ziqing, ZHANG Liuming, LIN Jianxin, et al. Preparation and application of nanometer materials supported ruthenium catalysts[J]. Chin J Catal (in Chinese), 2012, 33(3): 377?388.
[13] HUA Zhongqiu. Gas sensing properties and mechanism of WO3-based nanoparticles sensors for inflammable gases[D]. Japan: Kyushu University, 2014.
[14] MILLER J T, SCHREIER M, JEREMY KROPF A, et al. A fundamental study of Pt tetraammine impregnation of silica 2. The effect of method of preparation, loading, and calcination temperature on (reduced) particle size[J]. J Catal, 2004, 225: 203?212. 
[15] 魏少红, 石蔚云, 牛新书. TiO2-WO3纳米粉体的制备及氨敏性能研究[J]. 电子元件与材料, 2003, 10: 26?28.
WEI Shaohong, SHI Weiyun, NIU Xinshu. Electron Compon Mater (in Chinese), 2003, 10: 26?28.
[16] OKAL J, ZAWADZKI M. Influence of catalyst pretreatments on propane oxidation over Ru/γ-Al2O3[J]. Catal Lett, 2009, 132(1): 225?234.
[17] MIYAZAKI A, BALINT I, AIKA K, et al. Preparation of Ru nanoparticles supported on γ-Al2O3 and its novel catalytic activity for ammonia synthesis[J]. J Cataly, 2001, 204(2): 364?371.
[18] LLOBET E, MOLAS G, MOLINÀS P, et al. Fabrication of highly selective tungsten oxide ammonia sensors[J]. J Electrochem Soc, 2000, 147(2): 776–779.
[19] TAKAO Y, MIYAZAKI K, SHIMIZU Y, et al. High ammonia sensitive semiconductor gas sensor with double-layer structure and interface electrodes[J]. J Electrochem. Soc, 1994, 141: 189?200.
[20] DE BOER M, HUISMA H, MOS R, et al. Selective oxidation of ammonia to nitrogen over SiO2 supported MoO3 catalysts[J]. Catal Today, 1993, 17: 189?200.
[21] YAMAZOE N, SHIMANOE K. Receptor function of small semiconductor crystals with clean and electron-traps dispersed surfaces[J]. Thin Solid Films, 2009 (517): 6148?6155.
[22] HUA Zhongqiu, YUASA Masayoshi, KIDA Tetsuya, et al. H2 sensing mechanism of Pd-loaded WO3 nanoparticle gas sensors[J]. Chem Lett, 2014, 43, 1435–1437.
[23] JIMENEZ I, VILA A M, CALVERAS A C, et al. Gas-sensing properties of catalytically modified WO3 with copper and vanadium for NH3 detection[J]. IEEE Sens J, 2005, 5(3): 385?390.
[24] GALLARDO J M, SANCHEZ V, RAMIS G, et al. An FT-IR study of ammonia adsorption and oxidation over anatase-suported metal oxides[J]. Appl Catal B, 1997, 13: 45?58.
 
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com