首页期刊信息编委及顾问期刊发行联系方式使用帮助留言板ENGLISH
位置:首页 >> 正文
W、N和C共掺杂TiO2催化剂的制备及其光解水析氢性能
作者:赵学国 李家科 黄丽群 
单位:景德镇陶瓷大学 江西 景德镇 333001 
关键词:二氧化钛 光催化 共掺杂 光解水析氢 
分类号:O644
出版年,卷(期):页码:2018,46(1):78-84
DOI:
摘要:

采用湿化学法制备了W、N、C三元共掺杂TiO2光催化材料,并采用了X射线衍射、透射电子显微镜、X射线光电子能谱和紫外–可见光漫反射仪对其进行表征。结果表明:W以+6价方式取代Ti进入TiO2晶格,而N和C则以间隙方式进入TiO2晶格。W、N、C三元共掺杂可减小TiO2带隙(约3.0 eV),增强TiO2对紫外可见光吸收能力,有效地提高了其光解水析氢性能。W、N、C三元共掺杂TiO2光催化材料显示出较优异的光解水析氢性能。

 Nitrogen/carbon/tungsten-tridoped TiO2 photocatalyst was synthesized by a wet chemical method. The experiment results reveal that tungsten exists in the oxidation state of +6 and incorporates into the lattice of TiO2 by substituting Ti atoms. Nitrogen and carbon are incorporated into the lattice of TiO2 in interstitial mode. The light absorbance in UV-visible region is improved by tridoping with nitrogen, carbon and tungsten, leading to a narrower band gap (about 3.0 eV) and a better photocatalytic H2 evolution performance rather than those of pure and nitrogen/ carbon-codoped TiO2. The excellent photocatalytic H2 evolution performance of nitrogen/carbon/tungsten-tridoped TiO2 photocatalyst is attributed to the narrow band gap, the intense UV light absorption and the proper electronic structure.

基金项目:
国家自然科学基金(51462013)项目。
作者简介:
赵学国(1976—),男,高级工程师。
参考文献:

[1] ASAHI R, MORIKAWA T, OHWAKI T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001, 293(5528): 269–271.

[2] DI VALENTIN C, PACCHIONIG, SELLONI A. Theory of carbon doping of titanium dioxide[J]. Chem Mater, 2005, 17(26): 6656–6665.
[3] YU J C, YU H, JIANG Z. Effects of F- doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders[J]. Chem Mater, 2002, 14(9): 3808–3816.
[4] LIU G, PAN J, YIN L, et al. Heteroatom-modulated swithching of photocatalytic hydrogen and oxygen evolution preferences of anatase TiO2 microspheres[J]. Adv Funct Mater, 2012, 22(15): 3233–3238.
[5] HO W, YU J C, LEE S. Low-temperature hydrothermal synthesis of S-doped TiO2 with visible light photocatalytic activity[J]. J Solid State Chem, 2006, 179(4): 1171–1175.
[6] MA Y, WANG X L, JIA Y S, et al. Titanium dioxide-based nanomaterials for photocatalytic fuel generations[J]. Chem Rev, 2014, 114(19): 9987−10043.
[7] LI M, ZHANG J Y, ZHANG Y. First-principles calculation of compensated (2N, W) co-doping impacts on band gap engineering in anatase TiO2[J]. Chem Phys Lett, 2012, 527(8): 63–66.
[8] HU S Z, LI F Y, FAN Z P, et al. Enhanced photocatalytic activity and stability of nanoscaled TiO2 codoped with N and Fe[J]. Appl Surf Sci, 2011, 258: 182–188.
[9] ZHANG M, WU J, HOU J, et al. Molybdenum and nitrogen co-doped titanium dioxide nanotube arrays with enhanced visible light photocatalytic activity[J]. Sci Adv Mater, 2013, 5(6): 535–541.
[10] YU C L, YU J C. A simple way to prepare C-N-codoped TiO2 photocatalyst with visible-light activity[J]. Catal Lett, 2009, 129(3/4): 462–470.
[11] PAN H, ZHANG Y WE, SHENOY V B, et al. Effects of H-, N-, and (H, N)-doping on the photocatalytic activity of TiO2[J]. J Phys Chem C, 2011, 115(24): 12224–12231.
[12] LI W, WEI S H, DUAN X M. Control of optical absorption edge of TiO2 through co-doped acceptors: The chemical trend[J]. Phys Lett A, 2014, 378(30/31): 2275–2279.
[13] KARAKITSOU K E, VERYKIOS X E. Effects of altervalent cation doping of TiO2 on its performance as a photocatalyst for water cleavage[J]. J Phys Chem, 1993, 97(6): 1184–1189.
[14] KUBACKA A, FERNANDEZ-GARCIA M, COLON G. Advanced nanoarchitectures for solar photocatalytic applications[J]. Chem Rev, 2012, 112(3): 1555–1614.
[15] MOLLAVALI M, FALAMAKI C, ROHANI S. Preparation of multiple-doped TiO2 nanotube arrays with nitrogen, carbon and nickel with enhanced visible light photoelectrochemical activity via single-step anodization[J]. Int J Hydrogen Energy, 2015, 40: 12239–12252.
[16] RUZYBAYEV I, YASSITEPE E, ALI A, et al. Reactive pulsed laser deposited N–C codoped TiO2 thin films[J]. Mater Sci Semicond Process, 2015, 39: 371–376.
[17] ZHANG X, LIU Q Q. Preparation and characterization of titania photocatalyst co-doped with boron, nickel, and cerium[J]. Mater Lett, 2008, 62(17/18): 2589–2592.
[18] MUHICH C L, WESTCOTT J Y, FUERST T, et al. Increasing the photocatalytic activity of anatase TiO2 through B, C, and N doping[J]. J Phys Chem C, 2014, 118(47): 27415–27427.
[19] BLOH J Z, FOLLI A, MACPHEE D E. Adjusting Nitrogen doping level in titanium dioxide by codoping with tungsten: properties and band structure of the resulting materials[J]. J Phys Chem C, 2014, 118(36): 21281–21292.
[20] KUMAR S G, DEVI L G. Review on modified TiO2 photocatalysis under UV/visible light: Selected results and related mechanisms on interfacial charge carrier transfer dynamics[J]. J Phys Chem C, 2011, 115(46): 13211–13241.
[21] SATO S. Photocatalytic activity of NOx-doped TiO2 in the visible light region[J]. Chem Phys Lett, 1986, 123(1/2): 126–128.
[22] GOLE J L, STOUT J D, BURDA C, et al. Highly efficient formation of visible light tunable TiO2-xNx photocatalyst and their transformation at the nanoscale[J]. J Phys Chem B, 2004, 108(4): 1230–1240.
[23] GAO H, ZHOU J, DAI D, et al. Photocatalytic activity and electronic structure analysis of N-doped anatase TiO2: A combined experimental and theoretical study[J]. Chem Eng Technol, 2009, 32(6): 867–872.
[24] ZHAO X G, HUANG L Q. Iridium, carbon and nitrogen multiple-doped TiO2 nanoparticles with enhanced photocatalytic activity[J]. Ceram Int, 2017, 43: 3975–3980.
[25] CHARANPAHARI A, UMARE S S, GOKHALE S P, et al. Enhancec photocatalytic activity of multi-doped TiO2 for the degradation of methyl orange[J]. Appl Catal A, 2012, 443–444(10): 96–102.
[26] YU J G, YUE L, LIU S W, et al. Hydrothermal preparation and photocatalytic activity of mesoporous Au-TiO2 nanocomposite microspheres[J]. J Colloid Interface Sci, 2009, 334(1): 58–64.
[27] ZHANG W F, ZHANG M S, YIN Z, et al. Photoluminescence in anatase titanium dioxide nanocrystals[J]. Appl Phys B, 2000, 70(2): 261–265.
[28] WHEELER D A, LING Y C, DILLON R J, et al. Probing the nature of bandgap states in hydrogen-treated TiO2 nanowires[J]. J Phys Chem, 2013, 117(50): 26821–26830.
[29] CHOI W Y, TERMIN A , HOFFMANN M R. The role of metal Ion dopants in quantum-sized TiO2: Correlation between photoreactivity and charge carrier recombination dynamics[J]. J Phys Chem, 1994, 98(51): 13669–13679.
[30] ZHENG J, XIONG F Q, ZHOU M, et al. Enhanced photocatalytic degradation of rhodamine B under visible light irradiation on mesoporous anatase TiO2 microspheres by codoping with W and N[J]. Solid State Sci, 2016, 54: 49–53.
[31] BLOH J Z, FOLLI A, MACPHEE D E. Adjusting Nitrogen doping level in titanium dioxide by codoping with tungsten: properties and band structure of the resulting materials[J]. J Phys Chem C, 2014, 118 (36): 21281–21292.
[32] ZHANG R H, WANG Q, LI Q, et al. First-principle calculations on optical properties of C–N-doped and C–N-codoped anatase TiO2[J]. Physica B, 2011, 406(18): 3417–3422.
[33] Yamamoto T. Codoping method for solutions of doping problems in wide-band-gap semiconductors[J]. Phys Stat Solidi A, 2002, 193(3): 423–433.
[34] LONG R, ENGLISH N J. Synergistic effects on band gap-narrowing in titania by codoping from first-principles calculations[J]. Chem Mater, 2010, 22(5): 1616–1623.
 
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com