首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
Bi2MoO6/Ag3PO4复合光催化剂的制备及其光催化性能
作者:徐梦秋   闫俊涛 王春蕾 任占冬 
单位:武汉轻工大学化学与环境工程学院 武汉 430023 
关键词:钼酸铋 磷酸银 复合光催化剂 光催化降解 罗丹明B 
分类号:O643
出版年,卷(期):页码:2018,46(1):93-100
DOI:
摘要:

以片状的Bi2MoO6为前驱物,通过原位化学沉淀法制备了Bi2MoO6/Ag3PO4复合光催化剂,考察了其光催化降解罗丹明B(RhB)的活性。研究表明:Bi2MoO6和Ag3PO4复合可显著提高光催化活性,Bi2MoO6和Ag3PO4匹配的能级结构有利于光生电子和空穴的分离,延长光生载流子的寿命;当Bi2MoO6的质量分数为35%时,复合光催化剂具有最佳的光催化活性。

The Bi2MoO6/Ag3PO4 composites were prepared via in-situ chemical deposition of Ag3PO4 on the surface of plate-like Bi2MoO6. The photocatalytic activities were evaluated by the degradation of Rhodamine B (RhB) under visible light irradiation. The experimental results show that the coupling of Bi2MoO6 with Ag3PO4 can improve the photocatalytic activity, and the 35% Bi2MoO6/Ag3PO4 composite exhibits the optimum photocatalytic performance. The possible mechanism of the enhanced photocatalytic activity is ascribed to the well-matched energy bands of Bi2MoO6 and Ag3PO4, favoring the separation of photogenerated electron-hole pairs and extending the lifetime of charge carries.

基金项目:
武汉轻工大学校立科研项目(2017y17)。
作者简介:
徐梦秋(1994—),女,硕士研究生。
参考文献:
[1] HU X L, LI G S, JIMMY C Y. Design, fabrication, and modification of nanostructured semiconductor materials for environmental and energy applications[J]. Langmuir, 2010, 26(5): 3031–3039.
[2] 张圆正, 谢利利, 周怡静, 等. 二维Z型光催化材料及其在环境净化和太阳能转化的应用[J]. 化学进展, 2016, 28(10): 1528–1540.
ZHANG Yuanzheng, XIE Lili, ZHOU Yijing, et al. Prog Chem. (in Chinese), 2016, 28(10): 1528–1540.
[3] 陈博才, 沈洋, 魏建红, 等. 基于g-C3N4的Z型光催化体系研究进展[J]. 物理化学学报, 2016, 32(6): 1371–1382.
CHEN Bocai, SHEN Yang, WEI Jianhong, et al. Acta Phys Chim Sin (in Chinese), 2016, 32(6): 1371–1382.
[4] CHENG Z P, CHU X Z, SHENG Z H, et al. Synthesis of quasi-spherical AgBr microcrystal via a simple ion-exchange route[J]. Mater Lett, 2016, 168: 99–102.
[5] BI Y P, OUYANG S X, UMEZAWA N, et al. Facet effect of single-crystalline Ag3PO4 sub-microcrystals on photocatalytic properties[J]. J Am Chem Soc, 2011, 133(17): 6490–6492. 
[6] 蔡维维, 李蛟, 何静, 等. 磷酸银纳米结构的调控及其光催化性能研究[J]. 无机材料学报, 2017, 32(3): 263–268.
CAI Weiwei, LI Jiao, HE Jing, et al. J Inorg Mater (in Chinese), 2017, 32(3): 263–268.
[7] WANG P F, TANG H, AO Y H, et al. In-situ growth of Ag3VO4 nanoparticles onto BiOCl nanosheet to form a heterojunction photocatalyst with enhanced performance under visible light irradiation[J]. J Alloy Compd, 2016, 688: 1–7.
[8] ZHANG D, LI J, WANG Q G, et al. High {001} facets dominated BiOBr lamellas: facile hydrolysis preparation and selective visible-light photocatalytic activity[J]. J Mater Chem A, 2013, 1(30): 8622–8629. 
[9] 朱圣, 江向平, 李菊梅, 等. HNO3浓度对水热合成Bi2WO6形貌及光催化性能的影响[J]. 硅酸盐学报, 2017, 45(4): 563–571.
ZHU Sheng, JIANG Xiangping, LI Jumei, et al. J Chin Ceram Soc, 2017, 45(4): 563–571.
[10] ZHANG H L, YANG J Q, LI D, et al. Template-free facile preparation of monoclinic WO3 nanoplates and their high photocatalytic activities[J]. Appl Surf Sci, 2014, 305(12): 274–280.
[11] MA Y F, JIANG H Q, ZHANG X C, et al. Synthesis of hierarchical m-BiVO4 particles via hydro-solvothermal method and their photocatalytic properties[J]. Ceram Int, 2014, 40(10): 16485–16493.
[12] 王敏, 杨长秀, 郑浩岩, 等. pH 值对Bi2MoO6晶体形貌和可见光催化性能的影响[J]. 无机化学学报, 2015, 31(2): 309–316.
WANG Min, YANG Changxiu, ZHENG Haoyan, et al. Chin J Inorg Chem(in Chnese), 2015, 31(2): 309–316.
[13] FU G K, XU G N, CHEN S P, et al. Ag3PO4/Bi2WO6 hierarchical heterostructures with enhanced visible light photocatalytic activity for the degradation of phenol[J]. Cata Comm, 2013, 40(19): 120–124.
[14] 任延林, 李新勇, 肇启东. BiPO4@Ag3PO4核/壳异质结的制备及光催化性能[J]. 高等学校化学学报, 2014, 35(11): 2435–2441.
REN Yanlin, LI Xinyong, ZHAO Qidong. Chem J Chin Univ(in Chinese), 2014, 35(11): 2435–2441.
[15] XU Y S, ZHANG W D. Monodispersed Ag3PO4 nanocrystals loaded on the surface of spherical Bi2MoO6 with enhanced photocatalytic performance[J]. Dalton Trans, 2013, 42(4): 1094–1101.
[16] MEHRAJ O, NIYAZ A M, BILAL M P, et al. Fabrication of novel Ag3PO4/BiOBr heterojunction with high stability and enhanced visible-light-driven photocatalytic activity[J]. Appl Surf Sci, 2015, 332: 419–429. 
[17] LI L, QI Y H, LU J R, et al. A stable Ag3PO4@g-C3N4 hybrid core@shell composite with enhancedvisible light photocatalytic degradation[J]. Appl Catal B, 2016, 183: 133–141.
[18] 王雪静, 乔梅英. 碳微球负载Ag3PO4 的合成与其光催化性能[J]. 硅酸盐学报, 2015, 43(1): 98–102.
WANG Xuejing, QIAO Meiying. J Chin Ceram Soc, 2015, 43(1): 98–102.
[19] ZHANG L L, ZHANG H C, HUANG H, et al. Ag3PO4/SnO2 semiconductor nanocomposites with enhanced photocatalytic activity and stability[J]. New J Chem, 2012, 36(8): 1541–1544. 
[20] LIU W, WANG M L, XU C X, et al. Ag3PO4/ZnO: An efficient visible-light-sensitized composite with its application in photocatalytic degradation of Rhodamine B[J]. Mater Res Bull, 2013, 48(1): 106–113. 
[21] ZHANG L W, XU T G, XU Z, et al. Controllable synthesis of Bi2MoO6 and effect of morphology and variation in local structure on photocatalytic activities[J]. Appl Catal B, 2010, 98(3): 138–146.
[22] LI H P, LIU J G, HOU W G, et al. Synthesis and characterization of g-C3N4/Bi2MoO6 heterojunctions with enhanced visible light photocatalytic activity[J]. Appl Catal B, 2014, 160-161: 89–97.
[23] TIAN Y L, CHENG F X, ZHANG X, et al. Solvothermal synthesis and enhanced visible light photocatalytic activity of novel graphitic carbon nitride-Bi2MoO6 heterojunctions[J]. Powder Technol, 2014, 267: 126–133.
[24] LIANG Q H, SHI Y, MA W J, et al. Enhanced photocatalytic activity and structural stability by hybridizing Ag3PO4 nanospheres with graphene oxide sheets[J]. Phys Chem Chem Phys, 2012, 14(45): 15657–15665.
[25] CHAI B, YAN J T, WANG C L, et al. Enhanced visible light photocatalytic degradation of Rhodamine B over phosphorus doped graphitic carbon nitride[J]. Appl Surf Sci, 2017, 391: 376–383.
[26] JIANG W, AN C H, LIU J X, et al. Facile aqueous synthesis of β-AgI nanoplates as efficient visible-light-responsive photocatalyst[J]. Dalton Trans, 2014, 43(1): 300–305.
 
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com