首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
燃烧法合成CuCrO2及其与WO3复合后的光催化产氢性能
作者:宋立佳 王桂赟   田伟松 王延吉 
单位:河北工业大学化工学院 绿色化工与高效节能河北省重点实验室 天津 300130 
关键词:燃烧法 CuCrO2 光催化 复合燃烧剂 
分类号:O643
出版年,卷(期):页码:2018,46(1):101-107
DOI:
摘要:

 以硝酸铜、硝酸铬为原料,以甘氨酸和柠檬酸为复合燃烧剂,采用溶液燃烧法合成CuCrO2,并将其与WO3复合,制备复合催化剂CuCrO2-WO3,用于光催化分解水制氢的反应。通过X射线衍射、扫描电子显微镜、紫外可见漫反射光谱及BET比表面积对合成的CuCrO2样品进行了表征,考察了复合燃烧剂比例、燃烧液中氨水加入量和NaCl或KCl加入量对CuCrO2形貌及对应CuCrO2-WO3产氢性能的影响。结果表明:目标合成物CuCrO2为5 g,甘氨酸与金属离子总量摩尔比为1.4:1的情况下,当柠檬酸和甘氨酸复合比例为0.10:1、1 mol/L NH3·H2O加入量为10 mL、NaCl加入量为1.1 g时制得的CuCrO2样品分散性较好,对应的复合催化剂光催化活性较高。

CuCrO2 was synthesized via a solution combustion method using copper nitrate and chromium nitrate as starting materials, glycine and citric acid as a compound agent. The photocatalyst of CuCrO2-WO3 composite was prepared for hydrogen evolution from water splitting. Effects of ratio of compound combustion agent, amount of ammonia and amount of sodium chloride or kalium chloride on the morphologies of CuCrO2 and photocatalytic properties of CuCrO2-WO3 samples ware investigated by X-ray diffraction, scanning electron microscopy, ultraviolet-visible diffuse reflectance and specific surface area measurement, respectively. The result shows that the better photocatalytic property and dispersion can be achieved under the optimum condition (i.e., ratio of citric acid to glycine of 0.10:1, amount of ammonia of 0.01 mol and amount of sodium chloride of 1.1 g).
 
基金项目:
国家自然科学基金项目(21076058); 河北省自然科学基金项目(B2014202004) 资助。
作者简介:
宋立佳(1988—),男,硕士研究生。
参考文献:
[1] DONG G B, ZHANG M,ZHAO X P. Improving the electrical conductivity of CuCrO2 thin film by N doping[J]. Appl Surf Sci, 2010, 256(13): 4121–4124.
[2] GÖTZENDÖRFER S, POLENZKY C, ULRICH S. Preparation of CuAlO2 and CuCrO2 thin films by sol–gel processing[J]. Thin Solid Films, 2009, 518(4): 1153–1156.
[3] HAN M J, WANG J, DENG Q L, et al. Effect of annealing temperature on structural electronic properties and interband transitions of CuCrO2 nanocrystalline films prepared by the sol-gel method[J]. J Alloy Compd, 2015, 647: 1028–1034.
[4] WANG P F, LI P, YI T F, et al. Fabrication and electrochemical properties of CuCrO2 anode obtained by a sol–gel method[J]. Ceram Int, 2015, 41: 6668–6675.
[5] ZHOU S, FANG X D, DENG Z D. Room temperature ozone sensing properties of p-type CuCrO2 nanocrystals[J]. Sensor Actuat B–Chim, 2009, 143(1): 119–123.
[6] SAADI S, BOUGUELIA A, TRARI M. Photocatalytic hydrogen evolution over CuCrO2[J]. Sol Energy, 2006, 80(3): 272–280.
[7] KETIR W, REKHILA G, TRARI M. Preparation characterization and application of CuCrO2/ZnO photocatalysts for the reduction of Cr(VI)[J]. J Environ Sci, 2012, 24(12): 2173–2179.
[8] KETIR W, TRARI M, BESSEKHOUAD Y. Visible light induced HCl splitting over the hetero-system p-CuCrO2/n-WO3[J]. Renew Energy, 2014, 69: 1–6.
[9] 刘宗园, 王桂赟, 刘先平, 等. CuCrO2的合成及其复合催化剂的光催化性能[J]. 燃料化学学报, 2013, 41(12): 1473–1479.
LIU Zongyuan, WANG Guiyun, LIU Xianping, et al. J Fuel Chem Technol (in Chinese), 2013, 41(12): 1473–1479.  
[10] CUI J Y, CAO H Y, ZHOU W L, et al. Composition dependence of the structure and optical properties of CuCrO2 powders[J]. Mater Lett, 2016, 163: 28–31.
[11] MONTEIRO J F H L, JURELO A R, SIQUEIRA E C. Raman spectroscopy of the superconductor CuCrO2 delafossite oxide[J]. Solid State Commun, 2017, 252: 64–67.
[12] ZHOU S, FANG X D, DENG Z H, et al. Hydrothermal synthesis and characterization of CuCrO2 laminar nanocrystals[J]. J Cryst Growth, 2008, 310(1): 5375–5379.
[13] CETIN C, AKYILDOZ H. Production and characterization of CuCrO2 nanofibers[J]. Mater Chem Phys, 2016, 170: 138–144.
[14] CHIU T W, CHEN Y T. Preparation of CuCrO2 nanowires by electros pinning[J]. Ceram Int, 2015, 41: S407–S413.
[15] 刘先平, 王桂赟, 宁利娜, 等. 液相燃烧法合成CuCrO2及其与WO3复合后的光催化产氢性能[J]. 硅酸盐学报,2015, 43(1): 109–115. 
LIU Xian ping, WANG Gui yun, NING Li na, et al. J Chin Ceram Soc, 2015, 43(1): 109–115.
[16] CHIU T W, YU B S, WANG Y R, et al. Synthesis of nanosized CuCrO2 porous powders via a self-combustion glycine nitrate process[J]. J Alloy Compd, 2011, 509: 2933–2935.
[17] KUMAR S, MARINEL S, MICLAU M. Fast synthesis of CuCrO2 delafossite by monomode microwave heating[J]. Mater Lett, 2012, 70(3): 40–43.
[18] 李振花, 张晓珊, 曲江磊, 等. 制备方法对钼基耐硫甲烷化催化剂性能的影响[J]. 化工学报, 2017, 68(1): 129–135. 
LI Zhenhua, ZHANG Xiaoshan, WANG Weihan, et al. Influence of preparation methods on Mo-based catalyst for sulfur-resistant methanation[J]. CIESC J (in Chinese), 2017, 68(1): 129–135.
[19] CHANDRADASS J, KIM K H. Mixture of fuels approach for the solution combustion synthesis of LaAlO3 nanopowders[J]. Adv Powder Technol, 2010, 21(2): 100–105.
[20] AGHAYAN A, HUSSAINOVA I, KIRAKOSYAN K, et al. The template-assisted wet-combustion synthesis of copper oxide nanoparticles on mesoporous network of alumina nanofibers[J]. Mater Chem Phys, 2017, 192: 138–146.
[21] 姚莹莹, 李小慈, 周俊艺, 等. pH调节剂对溶液燃烧法制备纳米LaFeO3的影响[J]. 化学研究与应用, 2011, 23(6): 779–784. 
YAO Yingying, Li Xiaoci, Zhou Junyi, et al. Chem Res Appl (in Chinese), 2011, 23(6): 779–784.
[22] SALEN S. Rapid combustion synthesis of pure nano-crystalline gahnite: Effect of solution pH on powder characteristics[J]. Thermochim Acta, 2015, 609: 75–81.
[23] SHANMUGAVANI A, SELVAN R K. Influence of pH and fuels on the combustion synthesis structural, morphological, electrical and magnetic properties of CoFe2O4 nanoparticles[J]. Mater Res Bull, 2015, 71: 122–132.
[24] 吉可明, 孟凡会, 李忠. 溶液燃烧法制备无机材料研究进展[J]. 现代化工, 2014, 43(5): 22–26. 
JI Keming, MENG Fanhui, LI Zhong. Modern Chem Ind (in Chinese), 2014, 43(5): 22–26.
[25] CHEN W F, LI F S, YU J Y. Salt-assisted combustion synthesis of highly dispersed perovskite NdCoO3 nanoparticles[J]. Mater Lett, 2007, 61(2): 397–400.
[26] 郭明勇. 溶液燃烧法合成Co−Cu−Mn−Fe系纳米晶黑色陶瓷色料及性能研究[D]. 广州: 华南理工大学, 2015. 
GUO Mingyong. Preparation and property of Co−Cu−Mn−Fe nanocrystalline black ceramic pigments via solution combustion technique(in Chinese, dissertation). Guangzhou: South China University of Technology, 2015.
 
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com