首页期刊信息编委及顾问期刊发行联系方式使用帮助留言板ENGLISH
位置:首页 >> 正文
石榴石闪烁材料的研究进展
作者: 江1 陈肖朴1 2 寇华敏1  云1 陈昊鸿1 胡泽望1 2 
单位:1. 中国科学院上海硅酸盐研究所 透明光功能无机材料重点实验室 上海 201899 2. 中国科学院大学 北京 100049 
关键词:石榴石单晶 石榴石陶瓷 闪烁体 研究进展 
分类号:TQ174.75
出版年,卷(期):页码:2018,46(1):116-127
DOI:
摘要:

稀土离子掺杂的石榴石闪烁材料是20世纪90年代以后发展出的新型氧化物闪烁体。以Ce3+为发光中心的YAG与LuAG晶体是性能优良的闪烁体,具有纳秒级快衰减、高光产额等特性。而Pr3+为发光中心的LuAG单晶以其更快的衰减时间,被认为是下一代的TOF-PET探测器用的关键材料之一。在此基础之上,由于YAG与LuAG陶瓷制备温度较低,有利于减少基质中的反位缺陷,从而实现对闪烁性能优化。而近年来,“缺陷工程”与“能带工程”两种新思想的提出,对石榴石单晶与陶瓷的优化提出新的思路,从而石榴石闪烁材料性能得到进一步提升。本文综合评述了石榴石单晶与陶瓷闪烁体的研究进展,着重介绍“缺陷工程”和“能带工程”两种思想在石榴石体系闪烁材料优化中的应用,最后对其发展前景进行了展望。

 Rare-earth element ions doped garnet scintillators are oxide scintillators, which have been developed since 1990 s. Ce3+ activated YAG and LuAG single crystals are prospective scintillators due to their fast decay time and high light yield. Pr3+ activated LuAG single crystal is considered as one of the effective candidates for next generation TOF-PET detetor due to their extremely fast decay time. YAG and LuAG ceramics can reduce the concentration of anti-site defects that are harmful to scintillation properties due to their low fabrication temperatures. Recent methods called “defects engineering” and “bandgap engineering” were described for the further optimization of scintillation properties in garnet scintillators. Development of garnet single crystals and ceramics was represented. In addition, the further work on the garnet single crystal and ceramic scintillators was also proposed.

基金项目:
国家自然科学基金(61775226,61475175,61675221,U1332202);国家重点研发计划(2016YFB07010000,2017YFB0310502)资助项目。
作者简介:
李 江(1977—),男,博士,研究员。
参考文献:
[1] NIKL M, YOSHIKAWA A. Recent R & D trends in inorganic single-crystal scintillator materials for radiation detection[J]. Adv Opt Mater, 2015, 3(4): 463–481.
[2] NIKL M. Scintillation detectors for X-rays[J]. Meas Sci Technol, 2006, 17(4): 37–54.
[3] NIKL M, LAGUTA V V, VEDDA A. Complex oxide scintillators: material defects and scintillation performance[J]. Phys Status Solidi B, 2008, 245(9): 1701–1722.
[4] GRIM J Q, LI Q, UCER K B, et al. The roles of thermalized and hot carrier diffusion in determining light yield and proportionality of scintillators[J]. Phys Status Solidi A, 2012, 209(12): 2421–2426.
[5] NIKL M. Wide band gap scintillation materials: Progress in the technology and material understanding[ J]. Phys Status Solidi A, 2000, 178(2): 595–620.
[6] KHODYUK I V, DE HAAS J T M, DORENBOS P. Nonproportional response between 0.1–100 keV energy by means of highly monochromatic synchrotron X-rays[J]. IEEE Trans Nucl Sci, 2010, 57(3): 1175–1181.
[7] 刘书萍. LuAG:Ce透明闪烁陶瓷的制备及其性能优化研究[D]. 北京: 中国科学院大学, 2016.
LIU Shuping. Study on the fabrication and performance optimization of transparent LuAG:Ce scintillation ceramics (in Chinese, dissertation). Beijing: University of Chinese Academy of Science, 2016.
[8] HOFSTADTER R, The detection of gamma-rays with thallium-activated sodium iodide crystals[J]. Phys Rev, 1949, 75(5): 796–810.
[9] VANSCIVER W, HOFSTADTER R. Scintillations in thallium-activated CaI2 and CsI[J]. Phys Rev, 1951, 84(5): 1062–1063.
[10] WEBER M J. Inorganic scintillators: today and tomorrow[J]. J Lumin, 2002, 100(1/4): 35–45.
[11] VAN EIJK C W E. Inorganic scintillators in medical imaging[J]. Phys Med Biol, 2002, 47(8): R85–R106.
[12] CONTI M. State of the art and challenges of time-of-flight PET[J]. Phys Med-Eur J Med Phys, 2009, 25(1): 1–11.
[13] BACHMANN V, RONDA C, MEIJERINK A. Temperature quenching of yellow Ce3+ luminescence in YAG:Ce[J]. Chem Mater, 2009, 21(10): 2077–2084.
[14] 汪超, 任国浩. 石榴石系列闪烁晶体的研究进展[J]. 硅酸盐学报, 2015, 43(7): 882–891.
WANG Chao, REN Guohao. J Chin Ceram Soc 2015, 43(7): 882–891.
[15] FENG X Q. Anti-site defects in YAG and LuAG crystals[J]. J Inorg Mater, 2010, 25(8): 785–794.
[16] 洪广言, 稀土发光材料: 基础与应用[M]. 科学出版社. 2011.
[17] NIKL M, YOSHIKAWA A, KAMADA K, et al. Development of LuAG-based scintillator crystals – A review[J]. Prog Cryst Growth Charact Mater, 2013, 59(2): 47–72.
[18] PEJCHAL J, NIKL M, MIHOKOVA E, et al. Pr3+-doped complex oxide single crystal scintillators[J]. J Phys D, 2009, 42(5): 055177(1–10).
[19] BRANDLE, C D. Czochralski growth of oxides[J]. J Cryst Growth, 2004, 264(4): 593–604.
[20] WEBER M J. Nonradiative decay from 5d states of rare-earths in crystals[J]. Solid State Commun, 1973, 12(7): 741–744.
[21] AUTRATA R, SCHAUER P, KVAPIL J, et al. Single-crystal of YAG - new fast scintillator in sem[J]. J Phys E, 1978, 11(7): 707–708.
[22] MOSZYNSKI M, LUDZIEJEWSKI T, WOLSKI D, et al. Properties of the YAG-Ce scintillator[J]. Nucl Instrum Methods Phys Res Sect A, 1994, 345(3): 461–467.
[23] NIKL M, MIHOKOVA E, MARES J A. et al. Traps and timing characteristics of LuAG: Ce3+ scintillator[J]. Phys Status Solidi A, 2000, 181(1): R10–R12.
[24] IVANOVSKIKH K V, OGIEGLO J M, ZYCH A, et al. Luminescence temperature quenching for Ce3+ and Pr3+ d-f emission in YAG and LuAG[J]. Ecs J Solid State Scie Technol, 2013, 2(2): R3148–R3152.
[25] NIKL M, KAMADA K, BABIN V, et al. Defect engineering in Ce-doped aluminum garnet single crystal scintillators[J]. Cryst Growth Des, 2014, 14(9): 4827–4833.
[26] MARES J A, NIKL M, BEITLEROVA A, et al. Scintillation properties of Ce3+- and Pr3+-doped LuAG, YAG and Mixed LuxY1-xAG garnet crystals[J]. IEEE Trans Nucl Sci 2012, 59(5): 2120–2125.
[27] 汪超, 丁栋舟, 李焕英, 等. 镥铝石榴石(Lu3Al5O12:Pr)晶体的生长及发光性能[J]. 人工晶体学报, 2015(12): 3389–3394.
WANG Chao, DING Dongzhou, LI Huanying, et al. J Synth Cryst (in Chinese), 2015(12): 3389–3394.
[28] YANAGIDA T, FUJIMOTO Y, KAMADA K, et al. Scintillation properties of transparent ceramic Pr:LuAG for different Pr concentration[J]. IEEE Trans Nucl Sci, 2012, 59(5): 2146–2151.
[29] DORENBOS P. Fundamental limitations in the performance of Ce3+-, Pr3+-, and Eu2+-activated scintillators[J]. IEEE Trans Nucl Sci, 2010, 57(3): 1162–1167.
[30] MARES J A, BEITLEROVA A, NIKL M, et al. Scintillation response of Ce-doped or intrinsic scintillating crystals in the range up to 1 MeV[J]. Radiat Meas, 2004, 38(4/6): 353–357.
[31] ZORENKO Y, GORBENKO V, KONSTANKEVYCH I, et al. Single-crystalline films of Ce-doped YAG and LuAG phosphors: advantages over bulk crystals analogues[J]. J Lumin, 2005, 114(2): 85–94.
[32] DUJARDIN C, MANCINI C, AMANS D, et al. LuAG:Ce fibers for high energy calorimetry[J]. J Appl Phys, 2010, 108(1): 013510(1–7).
[33] KAMADA K, KUROSAWA S, PRUSA P, et al. Cz grown 2-in. size Ce:Gd3(Al,Ga)5O12 single crystal; relationship between Al, Ga site occupancy and scintillation properties[J]. Opt Mater, 2014, 36(12): 1942–1945.
[34] 潘裕柏, 李江, 姜本学. 先进光功能透明陶瓷[M]. 科学出版社. 2013.
[35] 陈积阳, 施鹰, 冯涛, 等. 闪烁陶瓷及其在医学 X-CT 上的应用[J]. 硅酸盐学报, 2004, 32(7): 868–872.
CHEN Jiyang, SHI Ying, FENG Tao, et al. J Chin Ceram Soc, 2004, 32(7): 868–872.
[36] 胡辰, 刘书萍, 冯召东, 等. LuAG:Ce,Mg 闪烁陶瓷的X射线平板探测器成像研究[J]. 无机材料学报, 2015, 30(8): 814–818.
HU Chen, LIU Shuping, FENG Zhaodong, et al. J Inorg Mater (in Chinese), 2015, 30(8): 814–818.
[37] 沈毅强, 石云, 潘裕柏, 等. 高光输出快衰减 Pr:Lu3Al5O12 闪烁陶瓷的制备和成像[J]. 无机材料学报, 2014, 29(5): 534–538.
SHEN Yiqiang, SHI Yun, PAN Yubo, et al. J Inorg Mater (in Chinese), 2014, 29(5): 534–538.
[38] IKESUE A, AUNG Y L. Ceramic laser materials[J]. Nat Photonics, 2008, 2(12): 721–727.
[39] ZYCH E, BRECHER C, WOJTOWICZ A J, et al. Luminescence properties of Ce-activated YAG optical ceramic scintillator materials[J]. J Lumin, 1997, 75(3): 19–203.
[40] YANAGIDA T, TAKAHASHI H, ITO T, et al. Evaluation of properties of YAG (Ce) ceramic scintillators[J]. IEEE Trans Nucl Sci, 2005, 52(5): 1836–1841.
[41] YANAGIDA T, YOSHIKAWA A, KAWAHARADA M, et al. Intrinsic resolution of ceramic YAG (Ce), GYAG (Ce), and YAG (Ce, Nd) scintillators[C]//Nuclear Science Symposium Conference Record, 2007. NSS'07. IEEE, 2007, 2: 1343–1346.
[42] LI J, SAHI S, GROZA M, et al. Optical and scintillation properties of Ce3+-doped LuAG and YAG transparent ceramics: a comparative study[J]. J Am Ceram Soc, 2017, 100(1): 150–156.
[43] HULL G, ROBERTS J J, KUNTZ J D, et al. Ce-doped single crystal and ceramic garnets for gamma ray detection[J]. Hard X-Ray and Gamma-Ray Detector Phys, 2007, 6706: 70617–70617.
[44] NIKL M, MARES J A, SOLOVIEVA N, et al. Scintillation characteristics of Lu3Al5O12:Ce optical ceramics[J]. J Appl Phys, 2007, 101(3): 033515(1–5).
[45] LI H L, LIU X J, XIE R J, et al. Cerium-doped lutetium aluminum garnet phosphors and optically transparent ceramics prepared from powder precursors by a urea homogeneous precipitation method[J]. Jpn J Appl Phys, 2008, 47(3): 1657–1661.
[46] 谢建军, 施鹰, 胡耀铭, 等. 共沉淀法制备Lu3Al5O12:Ce陶瓷发光粉体的研究[J]. 中国稀土学报, 2009, 27(1): 25–30.
XIE Jianjun, SHI Ying, HU Yaoming, et al. J Rare Earths (in Chinese), 2009, 27(1): 25–30.
[47] 陈杰, 张其冲, 王志远, 等. Ce:LuAG粉体的溶胶-凝胶燃烧法制备和发光性能[J]. 上海应用技术学院学报(自然科学版), 2014, 14(2): 109–112.
CHEN Jie, ZHANG Qichong, WANG Zhiyuan, et al. J Shanghai Inst Technol (in Chinese), 2014, 14(2):109–112.
[48] 李会利. 铈掺杂镥铝石榴石透明陶瓷的制备及其闪烁性能研究[D]. 北京: 中国科学院大学, 2006.
LI Huili. Preparation and scintillating properties of cerium-doped lutetium aluminum garnet optically transparent ceramics (in Chinese, dissertation). Beijing: University of Chinese Academy of Science, 2006.
[49] LI H L, LIU X J, HUANG L P. Synthesis of nanocrystalline lutetium aluminum garnet powders by co-precipitation method[J]. Ceram Int, 2006, 32(3): 309–312.
[50] LI H L, LIU X J, HUANG L P. Fabrication of transparent cerium-doped lutetium aluminum garnet (LuAG:Ce) ceramics by a solid-state reaction method[J]. J Am Ceram Soc, 2005, 88(11): 3226–3228.
[51] NIKL M, VEDDA A, FASOLI M, et al. Shallow traps and radiative recombination processes in Lu3Al5O12: Ce single crystal scintillator[J]. Phys Rev B, 2007, 76(19): 195121(1–8).
[52] YANAGIDA T, FUJIMOTO Y, YOKOTA Y, et al. Comparative study of transparent ceramic and single crystal Ce doped LuAG scintillators[J]. Radiat Meas, 2011, 46(12): 1503–1505.
[53] LIU S P, FENG X Q, SHI Y, et al. Fabrication, microstructure and properties of highly transparent Ce3+:Lu3Al5O12 scintillator ceramics[J]. Opt Mater, 2014, 36(12): 1973–1977.
[54] LIU S P, FENG X Q, NIKL M, et al. Fabrication and scintillation performance of nonstoichiometric LuAG:Ce ceramics[J]. J Am Ceram Soc, 2015, 98(2): 510–514.
[55] LIU S P, FENG X Q, ZHOU Z W, et al. Effect of Mg2+ co-doping on the scintillation performance of LuAG:Ce ceramics[J]. Phys Status Solidi-Rapid Res Lett, 2014, 8(1): 105–109.
[56] LIU S P, MARES J A, FENG X Q, et al. Towards bright and fast Lu3Al5O12:Ce,Mg optical ceramics scintillators[J]. Adv Opt Mater, 2016, 4(5): 731–739.
[57] YANAGIDA T, YOSHIKAWA A, IKESUE A, et al. Basic properties of ceramic Pr:LuAG scintillators[J]. IEEE Trans Nucl Sci, 2009, 56(5): 2955–2959.
[58] SHI Y, NIKL M, FENG X Q, et al. Microstructure, optical, and scintillation characteristics of Pr3+ doped Lu3Al5O12 optical ceramics[J]. J Appl Phys, 2011, 109(1): 013522(1–7).
[59] SHI Y, FENG X Q, PAN Y B, et al. Fabrication and photoluminescence characteristic of Pr: LuAG scintillator ceramics[J]. Radiat Meas, 2010, 45(3): 457–460.
[60] SHEN Y Q, FENG X Q, BABIN V, et al. Fabrication and scintillation properties of highly transparent Pr:LuAG ceramics using Sc,La-based isovalent sintering aids[J]. Ceram Int, 2013, 39(5): 5985–5990.
[61] SHEN Y Q, SHI Y, FENG X Q, et al. The harmful effects of sintering aids in Pr:LuAG optical ceramic scintillator[J]. J Am Ceram Soc, 2012, 95(7): 2130–2132.
[62] 沈毅强, 高光输出快衰减Pr:LuAG石榴石闪烁陶瓷的制备与研究[D]. 北京: 中国科学院大学, 2013.
SHEN Yiqiang. Fabrication and scintillation study of Pr:LuAG garnet ceramics with high light output and fast time decay (dissertation, in Chinese). Beijing: University of Chinese Academy of Science, 2013.
[63] HU C, FENG X, LI J, et al. Role of Y admixture in (Lu1−xYx)3Al5O12:Pr ceramic scintillators free of host luminescence[J]. Phys Rev Appl, 2016, 6(6): 064026(1–13).
[64] KANAI T, M SATOH, MIURA I. Hot-pressing method to consolidate Gd3(Al,Ga)5O12:Ce garnet scintillator powder for use in an X-ray CT detector[J]. Int J Appl Ceram Technol, 2013, 10(s1): 1–10.
[65] LUO Z, JIANG H, JIANG J, et al. Microstructure and optical characteristics of Ce:Gd3(Ga,Al)5O12 ceramic for scintillator application[J]. Ceram Int, 2015, 41(1): 873–876.
[66] CHEN X, QIN H, ZHANG Y, et al. Preparation and optical properties of transparent (Ce,Gd)3Al3Ga2O12 ceramics[J]. J Am Ceram Soc, 2015, 98(8): 2352–2356.
[67] CHEN X, QIN H, ZHANG Y, et al. Highly transparent ZrO2-doped (Ce,Gd)3Al3Ga2O12 ceramics prepared via oxygen sintering[J]. J Eur Ceram Soc, 2015, 35(14): 3879–3883.
[68] CHEN X, QIN H, WANG X, et al. Sintering and characterisation of Gd3Al3Ga2O12/Y3Al5O12 layered composite scintillation ceramic[J]. J Eur Ceram Soc, 2016, 36(10): 2587–2591.
[69] WU Y T, LUO Z H, JIANG H C, et al. Single crystal and optical ceramic multicomponent garnet scintillators: A comparative study[J]. Nucl Instrum Methods Phys Res Sect A, 2015, 780: 45–50.
[70] BURGER A, CHEREPY N J, FRANKS L A, et al. Transparent ceramic scintillators for gamma-ray spectroscopy and radiography[J]. Proc SPIE. 2010, 7805: 78050I(1–5).
[71] NIKL M. Energy transfer phenomena in the luminescence of wide band-gap scintillators[J]. Phys Status Solidi A, 2005, 202(2): 201–206.
[72] MIHOKOVA E, NIKL M, MARES J A, et al. Luminescence and scintillation properties of YAG:Ce single crystal and optical ceramics[J]. J Lumin, 2007, 126(1): 77–80.
[73] NIKL M, MIHOKOVA E, PEJCHAL J, et al. The antisite Lu-Al defect-related trap in Lu3Al5O12:Ce single crystal[J]. Phys Status Solidi B, 2005, 242(14): R119–R121.
[74] OGINO H, YOSHIKAWA A, NIKL M, et al. Suppression of defect related host luminescence in LuAG single crystals[J]. Phys Procedia, 2009, 2(2): 191–205.
[75] ZHANG S B, NORTHRUP J E. Chemical potential dependence of defect formation energies in GaAs: application to Ga self-diffusion[J]. Phys Rev Lett, 1991, 67(17): 2339–2342.
[76] ZORENKO Y, GORBENKO V, VOLOSHINOVSKII A, et al. Exciton-related luminescence in LuAG : Ce single crystals and single crystalline films[J]. Phys Status Solidi A: Appl Mater Sci, 2005, 202(6): 1113–1119.
[77] 邓志杰. 半导体缺陷工程[J]. 稀有金属, 1994, 18(2): 143–149.
DENG Zhijie. Chin J Rare Met (in Chinese), 1994, 18(2): 143–149.
[78] TYAGI M, MENG F, KOSCHAN M, et al. Effect of Co-doping On the Radiation Hardness of Gd3Ga3Al2O12:Ce Scintillators[J]. IEEE Trans Nucl Sci, 2015, 62(1): 336–339.
[79] NAGURA A, KAMADA K, NIKL M, et al. Improvement of scintillation properties on Ce doped Y3Al5O12 scintillator by divalent cations co-doping[J]. Jpn J Appl Phys, 2015, 54(4): 04DH17(1–4).
[80] KAMADA K, NIKL M, KUROSAWA S, et al. Alkali earth co-doping effects on luminescence and scintillation properties of Ce doped Gd3Al2Ga3O12 scintillator[J]. Opt Mater, 2015, 41: 63–66.
[81] WU Y T, MENG F, LI Q, et al. Role of Ce4+ in the scintillation mechanism of codoped Gd3Ga3Al2O12:Ce[J]. Phys Rev Appl, 2014, 2(4): 044009(1–13).
[82] 胡辰. 材料计算在石榴石闪烁陶瓷机理研究和新材料探索中的应用[D]. 北京: 中国科学院大学, 2015.
HU Chen. Application of computational materials in study of garnet ceramics scintillation mechanism and new materials exploration (in Chinese, dissertation). Beijing: University of Chinese Academy of Science, 2015.
[83] BARYSHEVSKY V G, KORZHIK M V, MINKOV B I, et al. Spectroscopy and scintillation properties of cerium-doped YAlO3 single-crystals[J]. J Phys-Condens Matter, 1993, 5(42): 7893–7902.
[84] STANEK C R, MCCLELLAN K J, LEVY M R, et al. Extrinsic defect structure of RE3Al5O12 garnets[J]. Phys Status Solidi B, 2006, 243(11): R75–R77.
[85] SPURRIER M A, SZUPRYCZYNSKI P, YANG K, et al. Effects of Ca2+ co-doping on the scintillation properties of LSO:Ce[J]. IEEE Trans Nucl Sci, 2008, 55(3): 1178–1182.
[86] YANG K, MELCHER C L, RACK P D, et al. Effects of calcium codoping on charge traps in LSO:Ce crystals[J]. IEEE Trans Nucl Sci, 2009, 56(5): 2960–2965.
[87] BLAHUTA S, BESSIERE A, VIANA B, et al. Evidence and consequences of Ce4+ in LYSO:Ce, Ca and LYSO:Ce, Mg single crystals for medical imaging applications[J]. IEEE Trans Nucl Sci, 2013, 60(4): 3134–3141.
[88] CHEWPRADITKUL W, WANARAK C, SZCZESNIAK T, et al. Comparison of absorption, luminescence and scintillation characteristics in Lu1.95Y0.05SiO5:Ce,Ca and Y2SiO5:Ce scintillators[J]. Opt Mater, 2013, 35(9): 1679–1684.
[89] OGINO H, YOSHIKAWA A, NIKL M, et al. Growth and luminescence properties of Pr-doped Lu3(Ga,Al)5O12 single crystals[J]. Jpn J Appl Phys Part 1: Regular Papers Brief Commun Rev Papers, 2007, 46(6A): 3514–3517.
[90] NIKL M, PEJCHAL J, MIHOKOVA E, et al. Antisite defect-free Lu3(GaxAl1-x)5O12:Pr scintillator[J]. Appl Phys Lett, 2006, 88(14): 141916(1–3).
[91] FASOLI M, VEDDA A, NIKL M, et al. Band-gap engineering for removing shallow traps in rare-earth Lu3Al5O12 garnet scintillators using Ga3+ doping[J]. Phys Rev B, 2011, 84(8): 081102(1–4).
[92] CHEREPY N J, SEELEY Z M, PAYNE S A, et al. Development of transparent ceramic Ce-doped gadolinium garnet gamma spectrometers[C]//Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2012 IEEE. IEEE, 2012: 1692–1697.
[93] MUNOZ-GARCIA A B, SEIJO L. Structural, electronic, and spectroscopic effects of Ga codoping on Ce-doped yttrium aluminum garnet: First-principles study[J]. Phys Rev B, 2010. 82(18): 184118(1–10).
[94] KAMADA K, ENDO T, TSUTUMI K, et al. Composition engineering in cerium-doped (Lu,Gd)3(Ga,Al)5O12 single-crystal scintillators[J]. Cryst Growth Design, 2011, 11(10): 4484–4490.
 
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com