位置:首页 >> 正文
作者:武志红1 李妤婕1  聪1  楷1 丁冬海1 2 薛群虎1 
单位:1. 西安建筑科技大学材料与矿资学院 西安 710055  2. 中国科学院上海硅酸盐研究所 高性能陶瓷和超微结构国家重点实验室 上海 200050 
关键词:竹炭 碳化硅 复合材料 包埋烧结 吸波性能 

以Si粉、竹炭为原料,采用包埋法制备具有类蜂窝结构的竹炭(bamboo carbon,BC)/SiC复合材料。结果表明:BC/SiC复合材料主要由β-SiC相、少量α-SiC相和非晶碳组成。BC/SiC复合材料呈蜂巢状多孔结构,孔内壁分布着直径不同、相互熔结连接的SiC三维聚集体结构层,其断裂韧性为18.8 MPa·m1/2,弯曲强度为34.5 MPa。BC/SiC复合材料形成的两相界面,提高了BC/SiC复合材料的吸波性能:介电常数实部最大值为9.14,虚部最大值为2.06;样品厚度为2.5 mm时,在10.7 GHz处,最低反射系数为–10.16 dB;反射系数<–8 dB的有效吸收带宽达2.1 GHz。

The bamboo charcoal (BC)/SiC composite with a special honeycomb-like structure was prepared by an embedded sintering method with silicon powder and bamboo charcoal as raw materials. The morphology and phase composition of BC/SiC composite were investigated by scanning electron microscopy and X-ray diffraction. The dielectric properties of BC/SiC composite materials were investigated by a rectangular waveguide method. The results indicate that the main phases of BC/SiC composite material are β-SiC and amorphous carbon, and there is a small amount of α-SiC phase. The BC/SiC composite material has a honeycomb-like porous structure with three-dimensional aggregation structure layers, which have different diameter sizes and consist of interconnected SiC. The fracture toughness and bending strength of BC/SiC composite are 18.8 MPa·m1/2 and 34.5 MPa, respectively. The interface between the crystal structures of SiC/BC composite material improves the microwave absorbing absorption properties of SiC/BC composite. The maximum real part of dielectric constant of BC/SiC composite is 9.14, and the maximum imaginary part is 2.06. The lowest reflection coefficient is –10.16 dB at 10.7 GHz, and the effective absorption bandwidth is 2.1 GHz with the reflection coefficient of lower than –8 dB when the sample thickness is 2.5mm,  showing the good absorbing absorpation performance of BC/SiC composites.

[1] 闫志巧, 熊翔, 肖鹏, 等. C/SiC复合材料表面化学气相沉积涂覆SiC涂层及其抗氧化性能[J]. 硅酸盐学报, 2008, 36(8): 1098–1102.
YAN Z Q, XIONG X, XIAO P, et al. J Chin Ceram Soc, 2008, 36(8): 1098–1102. 
[2] WEN B, CAO M, HOU Z, et al. Temperature dependent microwave attenuation behavior for carbon-nanotube/ silica composites[J]. Carbon, 2013, 65(12): 124–139. 
[3] SONG M, CAO Z, HOU X, et al. High dielectric loss and its monotonic dependence of conducting dominated multiwalled carbon nanotubes/silica nanocomposite on temperature ranging from 373 to 873K in X-band[J]. Appl Phys Lett, 2009, 94: 233–110.
[4] ZHANG H, YAN Q, ZHENG W, et al. Tough graphene polymer microcellular foams for electromagnetic interference shielding[J]. ACS Appl Mater Interface, 2011, 3(3): 918–924.
[5] 魏连锋, 李克智, 吴恒, 等. SiC改性C/C复合材料的制备及其烧蚀性能[J]. 硅酸盐学报, 2011, 39(2): 251–255.
WEI L F, LI K Z,WU H, et al. J Chin Ceram Soc, 2011, 39(2): 251–255.
[6] 陈晓燕, 董发勤, 杨玉山, 等. 炭黑/碳纤维/ABS电磁屏蔽复合材料的制备及其性能研究[J]. 功能材料, 2010, 41(4): 570–573.
CHEN X Y, DONG F Q, YANG Y S, et al. J Funct Mater (in Chinese), 2010, 41(4): 570–573.
[7] WU K H, TING T H, LIU C I, et al. Electromagnetic and microwave absorbing properties of Ni0.5Zn0.5Fe2O4/bamboo charcoal core–shell nanocomposites[J]. Compos Sci Technol, 2008, 68(1): 132–139.
[8] WU K H, TING T H, WANG G P, et al. Synthesis and microwave electromagnetic characteristics of bamboo charcoal/polyaniline composites in 2~40 GHz[J]. Synth Met, 2008, 158(17/18): 688–694.
[9] 刘金明, 陈晓红, 宋怀河, 等. 竹材制备碳化硅多孔陶瓷及吸波性能研究[J]. 炭素技术, 2008, 27(5): 31–36.
LIU J M, CHEN X H, SONG H H, et al. Carbon Tech (in Chinese), 2008, 27(5): 31–36.
[10] 朱江涛, 黄正宏, 康飞, 等.竹炭的性能和应用研究进展[J]. 材料导报, 2006, 20(4): 41–43.
ZHU J T, HUANG Z H, KANG F, et al. Mater Rev (in Chinese), 2006, 20(4): 41–43.
[11] DING D, SHI Y, WU Z, et al. Electromagnetic interference shielding and dielectric properties of SiCf/SiC composites containing pyrolytic carbon interphase[J]. Carbon, 2013, 60(12): 552–555.
[12] LI Z, ZHOU W, LEI T, et al. Microwave dielectric properties of SiC(B) solid solution powder prepared by sol–gel[J]. J Alloy Compd, 2009, 475(1/2): 506–509.
[13] BAI X, ZHAI Y, ZHANG Y. Green approach to prepare graphene-based composites with high microwave absorption capacity[J]. J Phys Chem C, 2011, 115(23): 11673–11677.
[14] LI Q, YIN X, DUAN W, et al. Electrical, dielectric and microwave-absorption properties of polymer derived sic ceramics in X band[J]. J Alloy Compd, 2013, 565(28): 66–72.
[15] NESS J N, PAGE T F. Microstructural evolution in reaction-bonded silicon carbide[J]. J Mater Sci, 1986, 21(4): 1377–1397.
[16] HASE T, SUZAKI H. Rise in temperature of SiC pellet involving reaction sintering[J]. J Nucl Mater, 1976, 59(1): 42–48.
[17] SUN H, CHE R, YOU X, et al. Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities[J]. Adv Mater, 2014, 26(48): 8120–8125.
[18] HUYNEN I, QUIÉVY N, BAILLY C, et al. Multifunctional hybrids for electromagnetic absorption[J]. Acta Mater, 2011, 59(8): 3255–3266. 
[19] VAHEDI F, SHAHVERDI H R, SHOKRIEH M M, et al. 碳纳米管对环氧树脂基纳米复合材料的力学和电学性能影响[J]. 新型碳材料. 2014, 29(6): 419–425.
VAHEDI F, SHAHVERDI H R, SHOKRIEH M M, et al. New Carbon Mater (in Chinese). 2014, 29(6): 419–425.
[20] WU J, CHUNG D D L. Increasing the electromagnetic interference shielding effectiveness of carbon fiber polymer–matrix composite by using activated carbon fibers[J]. Carbon, 2002, 40(3): 445–447. 
[21] ZHAO X, WANG L, XU X, et al. Fabrication and photocatalytic properties of novel ZnO/ZnAl2O4 nanocomposite with ZnAl2O4 dispersed inside ZnO network[J]. AICHE J, 2012, 58(2): 573–582.
[22] GARCIA-BARRIOCANAL J, RIVERA- CALZADA A, VARELA M, et al. Colossal ionic conductivity at interfaces of epitaxial ZrO2:Y2O3/SrTiO3 heterostructures[J]. Science, 2008, 321(5889): 676–680.
[23] HUANG Y, CAO Q, LI Z, et al. Effect of synthesis atmosphere on the microwave dielectric properties of ZnO powders[J]. J Am Ceram Soc, 2009, 92(9): 2129–2131. 
[24] SUN H, CHE R, YOU X, et al. Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities[J]. Adv Mater, 2014, 26(48): 8120–8125.
[25] 步文博, 丘泰, 徐洁. AIN–SiC复相材料的制备及其微波衰减性能[J]. 硅酸盐学报, 2003, 31(9): 828–831. 
BU W B, QIU Q, XU J. J Chin Ceram Soc, 2003, 31(9): 828–831.
[26] WANG C, HAN X, XU P, et al. The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material[J]. Appl Phys Lett, 2011, 98(7): 217.
[27] SAINI P. Intrinsically conducting polymer-based blends and composites for electromagnetic interference shielding: Theoretical and experimental aspects[C]//Fundamentals of conjugated polymer blends, copolymers and composites: Synthesis, properties and applications. John Wiley & Sons, Inc. 2015: 449–518.
[28] VERMA P, SAINI P, CHOUDHARY V. Designing of carbon nanotube/polymer composites using melt recirculation approach: Effect of aspect ratio on mechanical, electrical and EMI shielding response[J]. Mater Des, 2015, 88: 269–277.
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254